Former Kesler Mill/Fieldcrest Cannon Plant #7 Phase II Environmental Site Assessment (ESA)

Former Kesler Mill (Mill)/Fieldcrest Cannon Plant #7
423 N. Martin Luther King Jr. Avenue Salisbury, North Carolina

1032458

Phase II Environmental Assessment (ESA) Report

Former Kesler Mill (Mill)/Fieldcrest Cannon Plant #7 423 N. Martin Luther King Jr. Avenue Salisbury, North Carolina 58, 32

Date:

February 16, 2016

Prepared for

City of Salisbury

217 South Main Street Salisbury, NC 28144

Planning/Brownfields Director, Janet Gapen

Phone: (704) 638-5230 jgape@salisburync.gov

Geoffrey Little

Brownfields Program Manager

NCDEQ, Division of Waste Management

1646 Mail Service Center

Raleigh, NC 27699 Phone: (919) 707-8252 geof.little@ncdenr.gov

David Champagne

Brownfields Project Officer

USEPA Region 4 61 Forsyth Street SW Atlanta, GA 30303 Phone: (404) 562-9028 champagne.david@epa.gov

Prepared by

Cardno, Inc./ATC Group Services LLC

7606 Whitehall Executive Center Drive, Suite 800

Charlotte, NC 28273 Christine Schaefer Project Manager

Phone: (704) 529-3200

christine.schaefer@atcassociates.com

Report Signature

This Phase II ESA was overseen and/or performed by ATC Principal Scientist, Mr. David A. Hunter, P.G. (NC 1171). Mr. Hunter is a Professional Geologist (P.G.) with more than 28 years of experience in environmental practice. He has managed and/or otherwise been directly involved in hundreds of environmental site assessments during this period.

David A. Hunter, P.G., NC Reg. 1171

Principal Scientist

Date

1/4/4 2/10/10

Table of Contents

Rep	ort Sign	ature		iii				
Con	nmonly	Used Acr	onyms	vii				
Dist	ribution	List		viii				
Rep	ort Limi	tations		viii				
1	Introduction							
	1.1	1.1 Purpose						
	1.2	Site Location & Description						
	1.3	Background						
	1.4	Previous Site Assessments						
2	Samp	ling Meth	odology & Results	4				
	2.1	Soil Samples						
	2.2	Soil Samples SQAPP Deviations						
	2.3	Soil La	boratory Results	5				
		2.3.1	Soil Sample Results—Metals	6				
		2.3.2	Soil Sample Results—Volatile Organic Compounds (VOCs)	6				
		2.3.3	Soil Sample Results—Semi-Volatile Organic Compounds (SVOCs)	7				
		2.3.4	Soil Sample Results—Polychlorinated Biphenyls (PCBs)	7				
		2.3.5	Soil Sample Results—Diesel and Gasoline Range Organics (DRO/GRO)	7				
	2.4	Ground	dwater Monitor Well Installation and Sampling	8				
	2.5	Groundwater Samples SQAPP Deviations						
	2.6	Groundwater Laboratory Results						
		2.6.1	Groundwater Sample Results— Metals	8				
		2.6.2	Groundwater Sample Results—VOCs	9				
		2.6.3	Groundwater Sample Results—SVOCs	9				
		2.6.4	Groundwater Sample Results—PCBs	9				
		2.6.5	Groundwater Sample Results—DRO/GRO	9				
	2.7	Tributary Samples						
	2.8	Tributary Samples SQAPP Deviations						
	2.9	Tributary Laboratory Results						
		2.9.1	Tributary Sample Results—VOCs	10				
		2.9.2	Tributary Sample Results—SVOCs	10				
		2.9.3	Tributary Sample Results—PCBs	. 10				
3	Rece	ptor Eval	uation / Pathways for Contaminant Transport	10				
÷	3.1	Overla	and Surface Water Runoff	11				
	3.2	Groun	ndwater	11				

February 16, 2016

	3.3	Direct	On-site Exposure	11			
	3.4	3.4 Direct Off-site Exposure					
4	Potential Pathways for Future Contaminant Exposure						
	4.1	Soils		12			
	4.2	Ground	dwater	12			
	4.3	Surface	e Water	12			
	4.4	Sediment					
	4.5	Vapor	Intrusion (Indoor Air)	12			
5	Data Quality						
	5.1	Quality	Control Samples: Field, Trip, and Equipment Blanks	13			
	5.2	Proper	ty Specific Corrective Actions	13			
	5.3	Quality	Control Parameters	13			
		5.3.1	Precision	13			
		5.3.2	Accuracy	14			
		5.3.3	Representativeness	14			
		5.3.4	Comparability	14			
		5.3.5	Completeness	15			
		5.3.6	Sensitivity	15			
	5.4	Labora	itory Data Evaluation	15			
6	Discussion and Conclusions						
7	Refer	ences	· ·	16			
_	jures	ographic :	Site Location				

- Topographic Site Location
- 2. Aerial Site Map
- 3. Sample Locations Map
- 4. Metals Concentrations Map
- 5. Organics Concentrations Map
- 6. Groundwater Elevation Contour Map

Tables

- 1. Table 1A: Soil, Sediment, and Debris Samples Locations and Analysis Matrix Table 1B: Groundwater and Surface Water Samples Locations and Analysis Matrix
- 2. Table 2A: Analytes Detected In Soil
 - Table 2B: Analytes Detected In Groundwater
 - Table 2C: Analytes Detected In Sediment
 - Table 2D: Analytes Detected In Surface Water
- 3. Monitor Well Construction and Groundwater Elevation Data
- 4. Quality Control Precision Analysis

Appendices

- A. Analytical Reports w/Chains-of-Custody
- B. Boring Logs and Well Construction Records
- C. Waste Disposal Documentation

February 16, 2016

Commonly Used Acronyms

AAI All Appropriate Inquiry

ABCA Analysis of Brownfield Cleanup Alternatives

ACM Asbestos Containing Material AST Aboveground Storage Tank

ASTM American Society for Testing & Materials

BFA Brownfields Agreement
BLS Below Land Surface

Cardno Cardno, Inc.

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CERCLIS Comprehensive Environmental Response, Compensation and Liability Information

System

EP Environmental Professional

ERNS Emergency Response Notification System

EPA Environmental Protection Agency
ESA Environmental Site Assessment
ESI Expanded Site Inspection
FOIA Freedom of Information Act
FIRM Flood Insurance Rate Map
IC Institutional Controls
LBP Lead-Based Paint

LUST Leaking Underground Storage Tank

MSL Mean Sea Level

NCDEQ North Carolina Department of Environmental Quality

NCGS North Carolina Geologic Survey NFRAP No Further Remedial Action Plan

NPL National Priority List

PA/SI Preliminary Assessment/Site Inspection
PAH Polynuclear Aromatic Hydrocarbon

PCB Polychlorinated Biphenyl

PPB Parts per Billion
PPM Parts Per Million

PRG Preliminary Remediation Goal QAPP Quality Assurance Project Plan

RACM Regulated Asbestos Containing Material

RBC Risk Based Concentrations
RBSL Risk Based Screening Level

RCRA Resource Conservation and Recovery Act
REC Recognized Environmental Condition
SVOC Semi-volatile Organic Compound

TAL Target Analyte List
TMS Tax Map Serial

USEPA United States Environmental Protection Agency

USGS United States Geological Survey
UST Underground Storage Tank
VOC Volatile Organic Compound

Distribution List

This Phase II Environmental Site Assessment (ESA) for the Former Kesler Mill/Fieldcrest Cannon Plant #7 property in Salisbury, North Carolina will be distributed to the following representatives:

- David Champagne, Brownfields Project Officer, USEPA Region 4, 61 Forsyth Street SW, Atlanta, GA 30303, Phone: (404) 562-9028, Email: champagne.david@epa.gov
- Geoffrey Little, Brownfields Program Manager, NCDEQ, Division of Waste Management, 1646 Mail Service Center, Raleigh, NC 27699, Phone: (919) 707-8252, Email: geof.little@ncdenr.gov
- Janet Gapen, City of Salisbury Planning/Brownfields Director, City of Salisbury, 217
 South Main Street, Salisbury, NC 28144, Phone: (704) 638-5230, Email: jgape@salisburync.gov

Report Limitations

All work performed by Cardno was completed in accordance with generally accepted professional practices related to the nature of the work accomplished, in the same or similar localities, and at the time the services were performed. This report is for the specific application to the referenced project and for the exclusive use of the City of Salisbury, North Carolina. Cardno accepts no liability related to site environmental impact, regardless of the date of impact findings or occurrence.

February 16, 2016 Cardno

1 Introduction

This Phase II Environmental Site Assessment (ESA) report details the assessment activities conducted in accordance with the Generic Quality Assurance Project Plan (QAPP) and the Site-specific QAPP Addendum 1 (Addendum) prepared for the Former Kesler Mill/Fieldcrest Cannon Plant #7 site located at 423 N. Martin Luther King Jr. Avenue in Salisbury, North Carolina (site/subject property). The assessment presented herein was conducted under a Brownfields Assessment Grant between the U.S. Environmental Protection Agency (EPA) and City of Salisbury (Grantee), EPA Cooperative Agreement No. BF-00D26514-0.

The Grantee intends to facilitate redevelopment of the subject property by investigating areas of environmental concern identified during a previous Phase I ESA. By clarifying the environmental conditions at the site via the Phase II ESA, the City can now develop a plan and secure necessary funding to clean up the property and render it safe for the future planned reuse. The Addendum was prepared to meet this goal in support of the potential redevelopment efforts.

The Addendum identified the current site conditions, site-specific methods of assessment, data quality assurance measures to be employed, program reporting requirements, and the certified analytical laboratory to be utilized. The Addendum also provided a schedule of implementation and included the property owner's contact information. The Addendum was considered supplementary to the Generic QAPP, submitted under separate cover. The Generic QAPP was prepared to outline broad data quality goals for all projects conducted under the Brownfields Program in Salisbury, North Carolina. The Generic QAPP and the Addendum were amended to reflect comments by EPA and the North Carolina Department of Environmental Quality (DEQ) technical reviewers, where necessary. Signed, executed copies of each document are on file with the Grantee and each agency for public review.

1.1 Purpose

The Grantee will use the information gathered from this assessment to better understand the site conditions as it moves toward redevelopment. The City has envisioned redeveloping the site for potential multi-family housing, commercial, and recreational uses. The Phase II ESA was performed to better define the extent of soil, sediment, and groundwater contamination on the site. This information is being used by stakeholders to help determine if and to what extent remediation is required or if further assessment is necessary.

1.2 Site Location & Description

The subject property consists of six parcels totaling 13.536-acres located at 423 N. Martin Luther King Jr. Avenue in Salisbury, North Carolina. A site vicinity map, consisting of the relevant portion of the United States Geological Survey (USGS) topographic map, Salisbury, NC quadrangle, is included for reference (**Figure 1**).

The subject property is currently owned by Fund for Community Support Incorporated and is located in an area of single-family residential housing. No structures are located on the site.

According to the USGS and the North Carolina Geologic Survey (NCGS), the subject property is located in the Piedmont Physiographic Province of North Carolina. The rock type at the site has been identified as granite. The shallow subsurface in most areas of the Piedmont contains residual soil overburden, including structure-free residuum, saprolite, and partially weathered rock (PWR) that derive from in-place weathering of the crystalline bedrock. Occasional areas containing recent deposits of alluvium in the uppermost subsurface are found near streams and rivers. Saprolite and PWR typically contain some relict structures from the original rock material. Depth to rock ranges from ground surface at occasional outcrops to depths of greater than 100 feet in areas of easily weathered rock.

According to the Groundwater Atlas of the United States, the most widespread aquifers in the Piedmont and Blue Ridge Provinces are the crystalline-rock and undifferentiated sedimentary-rock aquifers. Most of the rocks that compose these aquifers are crystalline metamorphic and igneous rocks of many types. The main types of crystalline rocks are coarse-grained gneisses and schists of various mineral composition; however, fine-grained rocks, such as phyllite and metamorphosed volcanic rocks, are common in places. The undifferentiated sedimentary-rock aquifers consist of tightly cemented, predominately clastic rocks, many of which grade into metamorphic rocks. Unconsolidated material called regolith overlies the crystalline-rock and undifferentiated sedimentary-rock aquifers almost everywhere. The regolith consists of saprolite, colluvium, alluvium, and soil. Saprolite is a blanket of decomposed or partially decomposed rock that is usually thick and clayey, and whose texture varies depending on the type of parent bedrock from which the saprolite is derived. Colluvium is weathered rock material that has slumped downward from hillsides. Alluvium consists mostly of water-transported sediment in stream valleys and channels. Because the regolith material varies greatly in thickness, composition, and grain size, its hydraulic properties also vary greatly.

Groundwater in the Piedmont Physiographic Province is typically found in unconfined or semiconfined conditions with a flow that generally mimics the topography. The USGS Topographic Map, Salisbury Quadrangle (**Figure 1**), indicates that groundwater is expected to follow the topography by flowing east towards a tributary to Town Creek.

1.3 Background

The subject property is the former location of the Kesler Manufacturing Company, which operated as a textile mill consisting of approximately 5,000 spindles. The former textile mill was then operated by J.W. Cannon which added a second mill building, office building, residential houses, and a store. The mill facility was operated by Cannon Mills Company in 1928 under the name Cannon Mill Plant #7. Cannon Mills Company was purchased by Fieldcrest Mills, Inc. in 1986, which was then purchased by Pillowtex in 1997. The facility was closed in August 2000, due to bankruptcy of Pillowtex. The former mill buildings have been razed, and no structures remain at the site.

Currently, the property is vacant, with former building concrete slabs and flooring and piles of building material in locations generally on the west side of the property. There is a chain-link fence around the property that is not fully secured in multiple locations. An access gate is located along N. Martin Luther King Jr. Avenue. Vegetation is growing through asphalt drive and concrete slab areas and is predominant in areas not covered by asphalt or concrete. The site topography gently slopes towards a tributary to Town Creek located on the eastern portion of the site. An aerial photograph of the property is included as **Figure 2**.

1.4 Previous Site Assessments

2013 Phase I ESA: Griffith completed a Phase I ESA of the subject property in August 2013. During the assessment, Griffith identified the following RECs associated with the subject property:

- 1) A 550-gallon gasoline UST was removed from the northern portion of the site on September 12, 1989. A release was documented to have occurred from the UST prior to its removal. Subsequent groundwater monitoring indicated petroleum impact to groundwater above North Carolina Groundwater Standards (2L Standards; Title 15A, NCAC, Subchapter 2L, Part .0202). The NCDEQ Mooresville Regional Office (MRO) issued a letter on July 15, 1992, stating that no further groundwater evaluation was required at the time. To date, a Letter of No Further Action (NFA) has not been issued for the release. The release and lack of NFA documentation constitutes a REC.
- 2) A 40,000-gallon #4 fuel oil UST and a 550-gallon #4 fuel oil day tank UST were removed from the center of the site on June 21, 1994. Releases were documented to have occurred from the USTs and product piping. On August 12, 1994, soil was excavated along the former product piping and day tank UST. Post-excavation sampling was performed and indicated that petroleum impact remained in the subsurface soils.
 - An NFA was issued for the release on July 18, 2001, and accepted proposed remediation by natural attenuation. Due to the likely remaining presence of #4 fuel oil in the subsurface, the incident constitutes a *REC*.
- 3) On July 12, 2007, a release of approximately 8,000 gallons of #6 fuel oil occurred from a 15,000-gallon AST due to apparent vandalism. The AST supplied fuel oil to the boiler room area of the site. According to EPA information, the release flooded the boiler room and ran across the site into the sanitary sewer system and a tributary of Town Creek. Approximately 8,000 gallons of fuel oil were recovered from the boiler room by Shamrock Environmental on July 15 and 16, 2007. During recovery effort, fuel oil leaching to the tributary of Town Creek was also observed. Remediation of the tributary continued until August 2, 2007.
 - A Notice of Violation (NOV) was issued to Southfund Properties of Atlanta, Georgia on July 27, 2007. The NOV required a written response documenting the proper disposal of impacted materials and post-remediation sampling results. No response to the NOV was identified in the NCDEQ MRO files. The likelihood of remaining subsurface impact from this incident constitutes a *REC*.
- 4) A PCB-impacted soil stockpile was identified at the site during the time of emergency response activities associated with the release from the 15,000-gallon AST. The origin of the PCBs was identified as an electrical transformer which was reported to have been vandalized prior to the AST release. The stockpile was reported to not have been secure and was exposed. No documentation of removal of the stockpile or post-removal sampling was identified. The potential presence of PCBs in the subsurface from the stockpile represents a REC.

5) The site was identified in the EDR Radius Report as a historical conditionally exempt small quantity generator of hazardous waste. Waste codes for the site included lead, benzene, tetrachloroethylene (PCE), and trichloroethylene (TCE). The possible presence of the identified compounds in the subsurface based on historic site use over an extended period constitutes a *REC*.

Subsequent to a review of historical documents, Cardno has identified two additional *RECs*. In the Phase I ESA appendices, a Site Profile provided by the EPA indicates the presence of an oil-water separator associated with the 2007 release from the 15,000-gallon AST. The Site Profile indicates that the spill flooded the boiler room, which contained a floor drain that fed to an on-site oil-water separator. The oil-water separator was observed to be filled with heating oil. The oil-water separator malfunctioned due to the fact it was not designed to accommodate such a high volume. Oil was observed to be seeping from the soils in proximity of the oil-water separator. Based on the information provided from the EPA, the presence and documented release from the oil-water separator constitutes a *REC*.

Former mill operations included two locations identified as mechanical shops and one location of former paint storage. The locations may have included the storage of potentially hazardous materials. The unknown nature of the locations and possible hazardous materials storage constitutes a *REC*.

2 Sampling Methodology & Results

The following sections outline the methodology used for collecting the environmental samples and the results of the investigation at the site. A Sample Locations Map depicting the locations of the soil borings, groundwater monitor wells, and tributary samples is included as **Figure 3**.

Any deviations from the SOW (Scope of Work) approved in the Addendum are detailed in the appropriate sections of this report.

Soil boring and well installation, equipment decontamination, and sample collection activities were conducted using best practices and the professional judgment of Cardno personnel in accordance with the USEPA Region 4 Science and Ecosystem Support Division (SESD) Field Branches Quality System and Technical Procedures. Careful handling of samples and equipment was observed throughout the sampling procedures to avoid cross contamination. Samples were kept at approximately four degrees centigrade (4° C) throughout the operation and during shipment to Prism Laboratories, Inc. (Prism) for analysis. Chain-of-custody forms were maintained during the shipping and handling process to document sample integrity. Copies of these forms are included with the laboratory analytical reports in **Appendix A**.

Assessment activities at the subject property included the collection of soil and groundwater samples from multiple areas across the site for laboratory analysis. Sediment and water samples were collected from the tributary on the eastern portion of the site. Also, structural debris samples were collected across the site for laboratory analysis for the presence of asbestos. A Limited Asbestos-Containing Materials (ACM) Survey Report, dated January 8, 2016, and submitted under separate cover, identified ACM in building debris in certain areas of the site.

2.1 Soil Samples

Under the supervision of Cardno personnel, six soil borings and 12 groundwater monitor wells were installed by a North Carolina-licensed driller (Terra Sonic International - #3287-B) in order to assess soil conditions across the property. The soil borings and wells were installed at the approximate locations depicted on **Figure 3**.

The samples were collected through a decontaminated stainless steel hand auger or use of a direct-push technology (DPT) rig to extract a continuous 5-foot long soil column into disposable cellulose acetate butyrate (CAB) core barrel liners dedicated for each location. Each soil column was characterized for soil lithology and screened for volatile organic compounds (VOCs) using Photoionization Detectors (PID) capable of reporting in parts per billion (ppb) and parts per million (ppm). Boring logs are provided in **Appendix B**. Two aliquots were collected from each soil column, one from approximately 0-1 feet below grade (surficial) and the other from the sample which displayed the highest PID reading; from approximately 4-6 feet below grade if no PID readings were observed; or from the deepest sample above groundwater if neither of the aforementioned conditions were met. Only one soil sample was collected at locations with very shallow groundwater. Each aliquot was analyzed for specific parameters based on its location on the property as listed in **Table 1A**.

2.2 Soil Samples SQAPP Deviations

Due to the proximity of the tributary in relation to proposed soil borings and monitor wells, Cardno eliminated one of the two originally proposed soil borings located adjacent to GW-5, and re-located proposed monitor well GW-5 further from the tributary. Cardno noted significant staining on floorboards on the southeastern portion of the site and added one soil boring in the area. The soil boring numbering sequence was changed based on the location modifications.

Two soil borings proposed for advancement within the former 15,000-gallon fuel oil AST containment were moved out of, and immediately adjacent to, the containment area. The containment consisted of approximately four foot high walls filled with water, mud, and cattails. Sampling within this containment area was not feasible.

Soil sample depths deviated from the SQAPP due to observed depths to water within borings. Samples were collected at shallower depths than originally proposed or eliminated completely, depending on depth to water in the specific location.

2.3 Soil Laboratory Results

The soil analytical data collected during the Phase II ESA are provided in the laboratory analytical reports included in **Appendix A**.

The laboratory analytical results were compared to the most stringent of carcinogenic and non-carcinogenic residential criteria for direct soil exposure, as listed in the EPA Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites (November 2015) using a target cancer risk of 1E-06 and hazard quotient of 1.0; most stringent of soil-to-groundwater and residential NCDEQ Maximum Soil Contaminant Concentrations (MSCC) (April 16, 2012); and most stringent of residential health-based and protection of groundwater NCDEQ Inactive Hazardous Sites Branch (IHSB) Preliminary Soil Remediation Goals (PSRGs) (September

2015). Analytes detected in the soil samples and the comparisons to the screening values are presented in **Table 2A** and depicted in **Figures 4** and **5**.

2.3.1 Soil Sample Results—Metals

Soil samples collected in areas of former paint storage and mechanical shops were analyzed for TAL-Metals. Numerous metals were detected. The following findings are notable:

- Soil samples collected from approximately ground surface to 7-feet below grade at borings SB-2, SB-3, and GW-4 indicated concentrations of aluminum, arsenic, cobalt, manganese, and vanadium above RSLs and/or PSRGs. Although some levels exceeded the average background values noted in USEPA's Hazardous Waste Land Treatment Trace Chemical Element Content of Natural Soils table (1983), concentrations did not exceed common ranges noted by the USEPA in the same table. Calcium, iron, potassium, and sodium were identified in borings SB-2, SB-3, and GW-4 but are not included on the EPA trace elements table. Concentrations of these metals were compared to the North Carolina Department of Environment, Health and Natural Resources Geochemical Atlas of North Carolina (1993). Reported levels of calcium, potassium, and sodium fall within general background concentration ranges identified in the area of the site. Reported concentrations of iron generally exceeded the atlas' indicated range but the predominant clay soil at the site may be the source of elevated iron levels. Most samples collected from SB-2, SB-3, and GW-4 exhibited similar metals concentrations with generally no higher than one order of magnitude variance. These findings generally suggest that the metals identified in the three boring locations represent natural, background concentrations.
- In addition to the metals identified in samples collected from SB-2, SB-3, and GW-4, concentrations above RSLs and/or PSRGs of antimony, cadmium, selenium, silver, and thallium were indicated in samples collected from boring GW-7. Some levels exceeded the EPA's average background values and concentrations of cadmium, cobalt, selenium, and silver generally significantly exceeded the maximum value of the common background range. Concentrations of thallium were reported in boring GW-7 but were absent from other samples at the site. Cardno believes these results are suggestive of impact from previous activities associated with the paint storage and mechanical shop areas, and additional assessment of metals at the site may be warranted.

2.3.2 Soil Sample Results—Volatile Organic Compounds (VOCs)

All soil samples, with the exception of those collected in the vicinity of the former fuel oil AST, were analyzed for VOCs. Low concentrations of acetone were detected at various locations and sample depths. Due to the ubiquitous nature of acetone and lack of other identified compounds in soil at the site, it is possible the compound is an artifact of the interaction of preservative with naturally occurring organic compounds. Low levels of naphthalene and trichlorofluoromethane were reported in soil samples GW-2 and GW-3. These samples were not located in areas of known or suspected historic site activity and may be a result of historic releases to the environment through improper waste disposal. No reported VOC concentration exceeded the EPA RSL, DEQ MSCC, and IHSB screening values, and no significance is attributed to these findings.

2.3.3 Soil Sample Results—Semi-Volatile Organic Compounds (SVOCs)

All soil samples, with the exception of those collected in the vicinity of the former gasoline UST, were analyzed for SVOCs. Concentrations of SVOCs, predominantly PAHs, were detected at various locations across the site. Elevated levels of PAHs above screening values were found in the following locations:

- Potential former oil/water separator area: Samples SB-1 and GW-5. Numerous PAHs
 were detected above residential RSLs, NCDEQ MSCCs, and IHSB PSRGs. Elevated
 concentrations are likely a result of the 2007 fuel oil release that reportedly flooded the
 oil/water separator.
- Former mechanical shops and paint storage area (and downgradient): Samples SB-2, SB-3, GW-4, and GW-7. Numerous PAHs were detected above residential RSLs, NCDEQ MSCCs, and IHSB PSRGs. One sample located downgradient of the former mechanical shop and paint storage area contained only 1-Methylnapthalene above the PSRG.
- Former 15,000-gallon #6 fuel oil AST area: Samples SB-4, SB-5, and GW-8. Numerous PAHs were detected above residential RSLs, NCDEQ MSCCs, and IHSB PSRGs in surficial (0-1 feet below grade) samples collected from each location near the reported 2007 release area.
- Former building stained floor area: Sample SB-6. Numerous PAHs were detected above residential RSLs and NCDEQ MSCCs in the surficial sample.
- General site conditions: Samples GW-2, GW-3, GW-6, GW-9, GW-10, and GW-12. Numerous PAHs were detected above residential RSLs, NCDEQ MSCCs, and IHSB PSRGs across the site, with the exception of GW-12 which contained minimal PAH concentrations below screening levels.
- Former transformer sub-station area: Sample GW-11. Benzo(a)pyrene and benzo(b)fluoranthene were detected above the MSCC and RSL, respectively in the surficial soil sample.

2.3.4 Soil Sample Results—Polychlorinated Biphenyls (PCBs)

Several soil sample locations were selected for PCBs analysis based on operating history and potential of PCB use at specific locations on the property. PCBs were not detected above laboratory reporting limits or method detection limits in samples collected at the site.

2.3.5 Soil Sample Results—Diesel and Gasoline Range Organics (DRO/GRO)

Soil samples collected in former petroleum UST, AST, and oil/water separator areas were analyzed for Total Petroleum Hydrocarbons (TPH) GRO and/or DRO, depending on the type of petroleum stored in the particular vessel. Concentrations of DRO above the NCDEQ reporting limit of 10 mg/kg were identified in surficial soils in the areas of the former fuel oil AST and associated oil/water separator, which were both impacted by the 2007 release.

2.4 Groundwater Monitor Well Installation and Sampling

Following collection of soil samples at locations GW-1 through GW-12, twelve (12), two-inch diameter, polyvinyl chloride (PVC) monitoring wells were installed using a DPT rig fitted with hollow-stem augers. Well depths ranged from approximately 11 to 30 feet below grade and each well was installed with an appropriate length of 0.010-inch screen section to bracket the water table. The annular space within the borings was filled with well-graded, pre-washed silica sand from the total depth to approximately one to two feet above the screen, and the sand pack was capped by a bentonite seal. Grout was then used to fill the remaining length of annular space. Each well was secured with locked well caps. Wells GW-1 and GW-7 were secured at the surface with flush-mount, eight-inch diameter, steel manhole covers and two-foot square concrete pads. Wells GW-2 through GW-6 and GW-8 through GW-12 were installed with five-foot long, aboveground, steel well protectors with hinged covers and two-foot square concrete pads. Well construction information is provided in Table 3. The wells were allowed to equilibrate prior to purging and sample collection. The sample locations are depicted on Figure 3. Table 1B provides a summary of sample locations and analytical methods for the respective location.

2.5 Groundwater Samples SQAPP Deviations

Water from wells that were proposed for metals analysis (GW-4 and GW-7) was purged and sampled using low-flow techniques in an effort to reduce turbidity, which has the potential for affecting metals analytical results. The remaining wells were purged and sampled using dedicated disposable bailers, as was prescribed in the SQAPP.

The SQAPP proposed collection of two soil and two groundwater duplicate samples for laboratory analysis. The groundwater duplicate samples were not collected.

2.6 Groundwater Laboratory Results

The groundwater analytical data collected during the Phase II ESA are provided in the laboratory analytical reports included in **Appendix A**.

The laboratory analytical results were compared to the North Carolina Groundwater Quality Standards (2L Standards) and Gross Contamination Levels (GCLs) provided in Title 15A NCAC 02L.0202 (April 2013 and September 2014) and 10 times the most stringent of freshwater and human health surface water standards provided in Title 15A NCAC 02B.0100 or EPA National Criteria (May 2013). Analytes detected in groundwater and the comparisons to screening values are presented in **Table 2B** and **Figures 4** and **5**.

2.6.1 Groundwater Sample Results— Metals

Samples were collected for TAL-metals analysis from monitor wells GW-4 and GW-7, located in the vicinity of former mechanical shops and paint storage. Groundwater samples collected from wells GW-4 and GW-7 indicated concentrations of aluminum, cobalt, iron, and manganese above 2L Standards and/or 10 times 2B Standards. Concentrations of aluminum and manganese were compared to the North Carolina Department of Environment, Health and Natural Resources Hydrogeochemical Atlas of North Carolina (1993) and were within general background concentration ranges identified in the area of the site. These concentrations may therefore be indicative of natural, background levels.

Iron was identified in soil and groundwater collected from GW-7. The concentrations may be indicative of impact from former site use but are more likely a result of natural levels due to predominant clayey lithology.

Cobalt was identified in soil and groundwater collected from GW-4. The soil concentrations of cobalt in boring GW-4 are assumed to be naturally-occurring. The concentration of cobalt in groundwater was minimal, possibly localized, and is not considered site environmental impact.

Although care was taken to minimize sample turbidity, laboratory analysis of turbid groundwater samples often results in elevated metals concentrations as a result of naturally-occurring metals dissolving off of soil particles entrained in the sample due to the interaction with acidic preservative. There is potential that metals identified in site groundwater were a result of sample turbidity.

2.6.2 Groundwater Sample Results—VOCs

Samples were collected from each monitor well for VOCs analysis, with the exception of well GW-8, located in the vicinity of the fuel oil AST. The concentration of 1,1-DCA reported in well GW-6 exceeded the 2L Standard. Low concentrations below screening levels of other chlorinated solvents were observed across the site.

2.6.3 Groundwater Sample Results—SVOCs

Samples were collected from the site wells for SVOCs (including PAH) analysis, with the exception of well GW-1, located in the vicinity of the former gasoline UST. No SVOCs were detected in site groundwater samples.

2.6.4 Groundwater Sample Results—PCBs

Samples were collected from well GW-11 for PCBs analysis. PCBs were not detected in the groundwater sample.

2.6.5 Groundwater Sample Results—DRO/GRO

Groundwater samples collected in areas of former petroleum UST, AST, and oil/water separator areas were analyzed for TPH GRO and/or DRO, depending on the type of petroleum stored in the particular vessel. Concentrations of GRO and DRO were not detected in the groundwater samples.

2.7 Tributary Samples

Surface water and sediment samples were collected from the Tributary of Town Creek. Samples of sediment and surface water were analyzed at four points from the section of the tributary which flows through the subject property. Sediment samples were collected using a decontaminated stainless steel hand auger and surface water samples were collected directly into the laboratory-provided sample containers. Samples were collected from downstream to upstream and sediment was collected after surface water to avoid sampling-induced turbidity and associated bias. Surface water and sediment sample locations are indicated on **Figure 3**. Sample analyses were completed as indicated in **Tables 1A** and **1B**.

2.8 Tributary Samples SQAPP Deviations

Tributary samples were collected as proposed in the SQAPP. Deviations to the work plan were not necessary.

2.9 Tributary Laboratory Results

The analytical data collected from the tributary during the Phase II ESA are provided in the laboratory analytical reports included in **Appendix A**.

The sediment laboratory analytical results were compared to the most stringent of carcinogenic and non-carcinogenic residential criteria for direct soil exposure, as listed in the EPA RSLs for Chemical Contaminants at Superfund Sites (November 2015) using a target cancer risk of 1E-06 and hazard quotient of 1.0; most stringent of soil-to-groundwater and residential NCDEQ MSCCs (April 16, 2012); and most stringent of residential health-based and protection of groundwater NCDEQ IHSB PSRGs (September 2015). The surface water laboratory analytical results were compared to the most stringent of freshwater and human health surface water standards provided in Title 15A NCAC 02B.0100 or EPA National Criteria (May 2013). Analytes detected in the tributary samples and the comparisons to the screening values are presented in **Tables 2C** and **2D** and depicted in **Figures 4** and **5**.

2.9.1 Tributary Sample Results—VOCs

Each sediment and surface water sample was analyzed for VOCs. Low concentrations of acetone, below the MSCC and PSRG, were detected in each of the sediment samples. No other VOC compounds were detected in the sediment samples. Low levels of 1,1-DCA, 1,1-DCE, chloromethane, chloroform, and bromodichloromethane, most of which were identified in site groundwater, were reported in the surface water samples. The reported results did not exceed 2B Standards.

2.9.2 Tributary Sample Results—SVOCs

Each sediment and surface water sample was analyzed for SVOCs. Concentrations of SVOCs were not reported in the surface water samples above laboratory reporting limits or method detection limits. Concentrations of SVOCs, specifically PAHs, were detected in sediment at each sample location. Elevated levels of PAHs that were identified in site soil were found in sediment along the tributary at concentrations that exceeded MSCCs and RSLs.

2.9.3 Tributary Sample Results—PCBs

The tributary sediment samples were analyzed for PCBs analysis based on operating history and potential of PCB use at specific locations on the property. PCBs were not detected above laboratory reporting limits or method detection limits in the four sediment samples.

3 Receptor Evaluation / Pathways for Contaminant Transport

Available information suggests that receptors are unlikely to be negatively impacted by contamination on the site via overland flow in the site's current configuration. Groundwater flow and direct exposure have the potential to represent complete pathways for contaminant transport to receptors.

3.1 Overland Surface Water Runoff

The surface water runoff over the site will predominately flow to the east and southeast to the tributary to Town Creek, located along the eastern portion of the property, and to Town Creek, located south of the site. The tributary continues to flow unimpeded to the southeast for approximately 1,500 feet before flowing into Town Creek. Due to poor accessibility, the tributary is unlikely to be used for fishing or water supply anywhere along its length. The larger Town Creek is classified by the NCDEQ as a Class C surface water body and therefore likely has no recreational, fishing, or other use. Surface water samples collected from the tributary indicated minor concentrations below applicable 2B Standards of solvents and compounds that form when chlorine is added to drinking water and react with other naturally occurring substances in water, such as decomposing plant material.

3.2 Groundwater

Groundwater at the site was generally observed at shallow depths, even rising to ground surface in a location adjacent to the tributary during a rain event. Water table depths increased uphill towards the western portion of the site. Although it is unlikely groundwater would be used at the site, the shallow water table is easily accessible beneath the ground surface. Additionally, though limited dissolved contaminants at the site do not warrant significant concern for receptors, the deep or bedrock aquifer, which may contain higher contaminant concentrations and would be the target depth for water supply wells, was not investigated during this assessment. Restrictions to groundwater use at the site may be justified.

3.3 Direct On-site Exposure

The Phase II ESA identified concentrations of several metals, SVOCs, and TPH DRO above risk-based screening values in the surface and shallow soils on-site. These levels are of concern for ingestion and dermal contact on-site. Multiple areas of the property are not covered by impermeable surface, and surficial and shallow soils are therefore easily accessible. Relatively low levels of metals and VOCs were reported in shallow groundwater at the site which is also easily accessible though unlikely to be accessed.

The on-site ACM survey confirmed the presence of ACM in certain areas of former building debris and rubble dispersed across the site. It is unknown whether the asbestos has migrated down into the soil.

The property is vacant with a chain-link fence surrounding the property. It is not completely secure from trespassers. In the site's current configuration, direct exposure is expected to be minimal and only to occasional trespassers.

3.4 Direct Off-site Exposure

It was beyond the scope of this ESA to evaluate contaminant levels off of the subject property, but Cardno believes there to be little on-going contaminant migration to off-site areas. Groundwater impact is expected to migrate downgradient towards the on-site tributary and, subsequently, downstream towards Town Creek. However, whether due to contaminant dilution or lack of mobility, minimal surface water impact was identified within the subject property boundaries during the Phase II ESA. Although contaminant levels increased in the downstream direction, the relatively low concentrations do not suggest that concentrations of concern exist further downgradient, off-site. Unknown deeper aquifer impact has the potential to move off-

site, somewhat unpredictably within bedrock fractures. Exposure to this deeper aquifer water would only be expected through bedrock water supply wells.

If undisturbed, the identified asbestos at the site is not expected to migrate. The debris piles themselves may act as somewhat of a windbreak to retard dispersal of site contaminants into nearby neighborhoods. During debris removal activity, ambient air sampling and material testing and wetting is recommended in order to detect and restrict any potential asbestos that may migrate off-site via air transport.

4 Potential Pathways for Future Contaminant Exposure

4.1 Soils

The site is currently vacant and there is therefore limited exposure potential to contaminants in soils at the site. However, direct exposure to the contaminants detected in surficial and subsurface soils can occur during site development and construction activities in the future. Cardno believes that site development should be planned and engineered to minimize future exposure to contaminants.

4.2 Groundwater

The metals and VOCs detected in groundwater collected from the monitor wells are suggestive of a dissolved phase plume of relatively low concentrations. A water supply well survey was not conducted during the Phase II ESA, but Cardno has historically identified water supply wells within the vicinity of the site during investigations associated with other properties. It is unknown whether vicinity water supply wells are in use, a deeper aquifer plume exists, or potential supply wells may intersect impact from the site. Therefore, complete pathways for off-site groundwater exposure are unknown at this time. The identified shallow groundwater impact at the site is unlikely to be accessed and is not considered a complete pathway for exposure.

4.3 Surface Water

Site runoff and groundwater may carry contaminants to surface waters. Minimal impact was identified in the tributary at the site. Although contaminant concentrations increased downstream, levels were well below applicable 2B Standards and Cardno believes concentrations will be sufficiently diluted once the tributary intersects Town Creek. Additionally, Town Creek and the tributary are considered Class C surface water bodies by the NCDEQ and are therefore unlikely to be used for fishing, recreation, etc.

4.4 Sediment

Impact by SVOCs was identified in tributary sediment at the site. Concentrations of SVOCs generally increased in the downstream direction between SS-1 and SS-3 but reduced slightly in sample SS-4, located at the downstream property boundary. Although the exposure pathway is unlikely due to inaccessibility of the creek.

4.5 Vapor Intrusion (Indoor Air)

There are no structures currently on the site and vapor intrusion is not a current pathway for exposure. The USEPA's Office of Solid Waste and Emergency Response (OSWER) Vapor

Intrusion Screening Level Groundwater to Indoor Air Concentrations Calculator, Version 3.45 (November 2015) was used to determine if on-site dissolved contaminant concentrations may pose a vapor intrusion risk. Using the worst-case concentration for each identified VOC, a residential property-use scenario, a target carcinogenic risk of 1.0E-06, and a target hazard quotient of 1, chloroform and 1,1-DCA indicated carcinogenic risks in exceedance of the target level. However, this scenario was particularly conservative as a target carcinogenic risk of 1.0E-06 is not currently advised by the USEPA or the State of North Carolina. A target of 1.0E-05, or more likely 1.0E-04, would be more appropriate, and the calculated combined risks do not exceed these target levels. However, due to the known impact by solvents at the site, additional testing may be warranted in the footprint of any buildings planned for the site, or redevelopment plans should explore pre-emptive engineering controls to minimize potential vapor intrusion.

5 Data Quality

The Generic QAPP and Site-specific QAPP Addendum for this assessment set forth the procedures and methods for data collection and defined the specific procedures and adjustments necessary to maintain data quality to support project decisions. The Phase II ESA required both field and laboratory checks to monitor conformance to project quality limits. Sample duplicates, equipment blanks, trip blanks, and field blanks were analyzed in order to help evaluate data quality. Soil duplicate data are presented in **Table 4** alongside their corresponding samples.

5.1 Quality Control Samples: Field, Trip, and Equipment Blanks

One (1) equipment blank and one (1) trip blank were collected concurrent with the soil sample collection event of November 4 through 6, 2015. Two (2) field blanks, one (1) equipment blank, and one (1) trip blank were collected concurrent with the groundwater sample collection event of November 10 through 13, 2015.

No concentrations of analyzed compounds were reported in the blank samples above the laboratory reporting limit or method detection limit.

5.2 Property Specific Corrective Actions

A field methods audit was not conducted during the field work for this site; however, the field practices were conducted in a method consistent with the methodology of the QAPP documents, relevant standard operating procedures, and professional judgment.

5.3 Quality Control Parameters

To assess whether quality assurance (QA) objectives for this project have been achieved, the following quality control (QC) parameters were considered: precision, accuracy, representativeness, comparability, completeness, and sensitivity.

5.3.1 Precision

As described in the SQAPP, precision is evaluated using the relative percent difference (RPD) between an actual sample and a duplicate sample. A comparison of the sample duplicates and their corresponding sample results was made to evaluate the reproducibility of the sample

results based on the laboratory analysis and sample collection and transportation procedures. A summary of the comparison is included as **Table 4**.

For this comparison, if the duplicate or sample results are less than five times the reporting detection limit (RDL), the comparison is made by the absolute difference between the results (sample - duplicate). If the difference was less than twice the RDL, precision is considered "acceptable." If both the sample and duplicate results are greater than five times the RDL, the precision is assigned as specified in the SQAPP based on the %RPD (difference in results divided by the average of the results times 100).

These comparisons were conducted on the analytes detected at any concentration or estimated concentration in the following:

- GW-4 (5-7) and its corresponding Duplicate-01
- GW-5 (0-1) and its corresponding Duplicate-02

Concentrations of multiple metals and SVOCs were found to have slightly high to high variability between the samples and their duplicates. Cardno believes this is in part due to natural variations in grab-type soil samples combined with the small laboratory aliquots ultimately used for analysis. Manual mixing of soils may not sufficiently provide adequately homogeneous samples that would result in comparative analytical results. This is particularly true for metals analysis. Concentrations of naturally-occurring metals can vary depending on the soil type. Slightly different amounts of clay/sand/loam in samples, as typically occurs when collecting duplicate samples from saprolitic soils, results in disparate soil textures that resist blending together with manual mixing methods.

5.3.2 Accuracy

Accuracy is evaluated using a percent recovery measured in spiked and un-spiked samples. Accuracy is a function of the laboratory method. Parameters regarding accuracy are included in the lab reports provided by the laboratory included in **Appendix A**. The laboratory reported no deviations in the accuracy parameters that would affect the sample results.

5.3.3 Representativeness

Cardno has evaluated the representativeness of the Phase II ESA activities to document the degree to which the sample data accurately and precisely represents environmental conditions. Review of field methods and procedures indicated that sample collection, handling, and transportation, as well as the placement of sample locations with respect to potential sources of impact, were conducted in general accordance with the SQAPP.

5.3.4 Comparability

To produce comparable data, the units specified for analytical results obtained during the field activities are consistent throughout this project and standardized analytical methods have been used for each parameter.

February 16, 2016 Cardno

5.3.5 Completeness

Laboratory analysis was completed on each of the samples collected in the field and submitted for analysis. Laboratory completeness was determined to be 100%.

5.3.6 Sensitivity

Laboratory RDLs and method detection limits (MDLs) were sufficient to report concentrations below regulatory standards for the majority of analytes. Some samples required dilution due to matrix interferences. Data qualifiers included potential high biases due to elevated continuing calibration verification and estimated concentrations above the instrument's calibration range. However, it is Cardno's opinion that the dilutions and data qualifiers do not affect the project objectives.

5.4 Laboratory Data Evaluation

The laboratory completed validation and verification of laboratory processes and data, and delivered a laboratory report to the Cardno Project Manager. The laboratory report and the QC information provide documentation of compliance with the SQAPP.

Data usability determination is also a part of data evaluation. Within any matrix it is likely that certain samples may have parameters that require qualifier codes. Prism includes various qualifiers, listed in **Tables 2A** through **2D**, when presenting data. No qualifier codes were identified that exclude a data point from being usable.

In reviewing the laboratory results, several analytes are reported as detections with "J" data qualifiers, indicating the reported value is an estimate reported within the 95% confidence interval. These compounds were detected above the MDL, but below the RDL. The MDL is the lowest concentration at which an analyte can be detected in a sample by the particular laboratory method used. "Detected" indicates that the analyte can be distinguished from the blank with reasonable certainty. The RDL (also called practical quantitation limit, or PQL) is approximately five times the MDL or the lower calibration standard, whichever is higher. Results above the report limit can be distinguished from the blank and fall within applicable standard curves. For the purposes of this assessment, all "J" qualified data are considered acceptable for making site management decisions.

6 Discussion and Conclusions

This Phase II ESA was performed in order to determine if contaminants exist at the site as a result of historical property uses identified during a Phase I ESA. The decision rule outlined in the Data Quality Objectives (DQOs) for this brownfields project, as presented in the Addendum, indicates that additional assessment and/or an Analysis of Brownfield Cleanup Alternatives (ABCA) should be prepared to evaluate remedial action and/or institutional controls in the event that analytes are observed in site media at concentrations exceeding regulatory limits.

Naturally-occurring metals were found in soils collected in the areas of the former paint shop and mechanical shops. Concentrations of aluminum, arsenic, cobalt, iron, manganese, vanadium, calcium, potassium, and sodium in borings SB-2, SB-3, and GW-4 likely represent natural, background concentrations based on local data provided by the EPA and State of North

Carolina. However, concentrations of cadmium, cobalt, selenium, silver, and thallium significantly exceeded common background ranges and additional assessment may be warranted to further delineate the extent of contamination. Concentrations of metals identified in site groundwater are potentially a result of sample turbidity and naturally-occurring, background levels.

Concentrations of VOCs identified in site soils and sediment are not considered significant. Concentrations of multiple chlorinated solvents were identified in groundwater and surface water below screening levels. The concentration of 1,1-DCA in well GW-6 was reported above the 2L Standard. Additional assessment or pre-emptive engineering controls may be warranted at the site, particularly in the area of GW-6, to assess or minimize the potential for vapor intrusion caused by identified VOCs. Groundwater-use restrictions at the site and a receptor survey in the vicinity of the site may be warranted based on identified chlorinated solvent impact.

Concentrations of PCBs were not identified above laboratory reporting limits or method detection limits in samples collected at the site.

Concentrations of TPH DRO above the screening level were identified in soils near the former oil/water separator and fuel oil AST, and seem to be a result of former site use. Additional assessment in these areas is recommended to delineate the extent of impact.

Concentrations of numerous PAHs above screening levels were distributed in soils across the property. Concentrations of elevated PAHs which may have originated from the site were also identified in site sediment. However, these compounds were not reported in site groundwater or surface water samples. Additional assessment of PAHs in soil and sediment may be warranted to delineate the extent of impact.

The findings of this assessment indicate that shallow site soils and groundwater have been impacted, ACM exists at the site, and a potential exposure risk from constituents exists if the site is to be redeveloped. Therefore, the preparation of an ABCA or other form of cleanup plan is warranted.

7 References

Cardno. Site-specific QAPP Addendum 1 for Brownfields Phase II ESA - Revision 0. Former Kesler Mill/Fieldcrest Cannon Plant #7 Site, Salisbury, NC, July 17, 2015

Griffith Enterprises. Phase I Environmental Site Assessment Report, Former Kesler Mill/Fieldcrest Cannon Plant #7, Salisbury, North Carolina. August 14, 2013.

NCDEQ Division of Water Quality. Groundwater Quality Standards, Section 15A NCAC 02L.0202 of the North Carolina Administrative Code Title 15A (9/18/14)

NCDEQ Division of Water Quality. Well Construction Standards, Section 15A NCAC 2C.0108 of the North Carolina Administrative Code Title 15A (October 1, 2009)

USEPA Office of Solid Waste and Emergency Response Vapor Intrusion Screening

16

Level Groundwater to Indoor Air Concentrations Calculator, Version 3.45. November 2015.

NCDEQ Division of Water Quality. Inactive Hazardous Sites Branch Preliminary Soil Remediation Goals (PSRG) Table. September 2015.

USEPA Region 4. SESD, Field Branches Quality System and Technical Procedures. February 2013.

USEPA Region 4. SESD, Field Branches Quality System and Technical Procedures. February 2008.

USEPA Regional Screening Levels Master Table. November 2015.

North Carolina Department of Environment, Health and Natural Resources, Geochemical Atlas of North Carolina, 1993.

USEPA. Hazardous Waste Land Treatment Trace Chemical Element Content of Natural Soils. 1983

FIGURES

TABLES

TABLE 1A: SOIL, SEDIMENT, AND DEBRIS SAMPLES LOCATIONS AND ANALYSIS MATRIX KESLER MILL

Location Description		Sample Depth (feet below grade)	Analytical Parameters						
Location Description	Sample ID		Asbestos	Metals	VOCs	SVOCs	PCBs	DRO	GRO
Former 550-Gallon Gasoline UST	GW-1	0-1 & 2-4			Х				Х
	GW-2	0-1 & 2-4							
	GW-3	0-1 & 4-6						ì	
	GW-6	0-1 & 2-4	1		.,				
General site conditions	GW-9	0-1 & 4-6		1	X	X			
	GW-10	0-1 & 6-8	} }						
	GW-12	0-1 & 4-6							
Potential Former Oil/Water	SB-1	0-2			.,				
Separator	GW-5	0-1			Х	X	X	X	Х
Former Paint Storage	SB-2	0-2 & 2-4		Х	Х	Х	Х		
	SB-3	0-2 & 2-4		V	· · · · · · · · · · · · · · · · · · ·	,			
Former Mechanical Shops	GW-4	0-1 & 5-7		Х	х	Х	X		
Downgradient location from former paint storage and mechanical shop	GW-7	0-1 & 2-4		х	X	х	Х		
5	SB-4	0-1 & 4-6	†						
Former 15,000-Gallon #6 Fuel Oil	SB-5	0-1 & 2-4	1 1			х	Х	х	
AST	GW-8	0-1 & 4-6							
Former Transformer Sub-Station	GW-11	0-1			х	х	x		i
Former Building Stained Flooring	SB-6	0-1 & 2-4			х	х	Х		
	SS-1	0.5							
ration and training Const.	SS-2	0.5	1	1	v	,	,,		
Tributary of Town Creek	SS-3	0.5	1 1	1	Χ .	^	X		
	SS-4	0.5	1	ŀ]
	S-1A,B,C								
	S-4A,B,C								
	S-5A,B,C								
Roofing	S-6A,B,C	N/A	x						
-	S-8A,B,C	1							
	S-9A,B,C	1				ļ			}
	S-11A,B,C				ļ				

TABLE 1A: SOIL, SEDIMENT, AND DEBRIS SAMPLES LOCATIONS AND ANALYSIS MATRIX KESLER MILL

Landin Bondation	Comple ID	Sample Depth (feet below grade)	Analytical Parameters						
Location Description	Sample ID		Asbestos	Metals	VOCs	SVOCs	PCBs	DRO	GRO
Folk	S-2A,B,C	N/A	х						
Felt	S-18A,B,C								
Transite Shingle	S-3A,B,C	N/A	Х						
I tolorous Nastaviala	S-7A,B,C	N/A	х						
Unknown Materials	S-14A,B,C,D,E,F,G		^						
	S-10A,B	N/A	х						
Tile	S-12A,B								
	S-13A,B								
	S-15A,B,C	N/A	x						
Shingles	S-16A,B,C								
	S-17A,B,C								

Notes:

VOCs = Volatile Organic Compounds

SVOCs = Semi-volatile Organic Compounds

PCBs = Polychlorinated Biphenyls

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

TABLE 1B: GROUNDWATER AND SURFACE WATER SAMPLES LOCATIONS AND ANALYSIS MATRIX KESLER MILL

	Sample ID	Sample Depth (feet below grade)	Analytical Parameters							
Location Description			Metals	VOCs	SVOCs	PCBs	DRO	GRO		
Former 550-Gallon Gasoline UST	GW-1	11.5		Х				Х		
	GW-2	7								
	GW-3	12.5		х						
	GW-6	8			X			}		
General site conditions	GW-9	16.5								
	GW-10	17.5								
	GW-12	21.5					İ			
Potential Former Oil/Water Separator	GW-5	6		Х	Х		х	х		
Former Mechanical Shops	GW-4	16.5	Х	Х	Х					
Downgradient location from former paint storage and mechanical shop	GW-7	10.5	х	х	Х					
Former 15,000-Gallon #6 Fuel Oil AST	GW-8	12.5			Х		Х			
Former Transformer Sub-Station	GW-11	7		Х	Х	Х				
Tributary of Town Creek	SS-1 SS-2 SS-3 SS-4	N/A		х	Х					

Notes:

VOCs = Volatile Organic Compounds

SVOCs = Semi-volatile Organic Compounds

PCBs = Polychlorinated Biphenyls

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

TABLE 2A: ANALYTES DETECTED IN SOIL KESLER MILL, NOVEMBER 4-6, 2015

	Ali Metals Results in me	g/kg																																		
			MSCC		SR.2	oc.	٢	omer Pain	SR-2			-	SR-3	oc			SR-3	oc	Fom	ner Mechani	cal Shop Are			1	GWL4	oc .					ent of Form	er Paint Sto	1	lechanical Si	nop Areas	
METALS	Aluminum Astinony Arsenic Benrium Benrium Benrium Calcium Cobait Colpan Inon Magnesum Magnesum Magnesum Magnesum Sheri Sheri Sheri Thishidum Thishidum	77000 31 0.68 15000 180 71 nsl 23 3100 55000 400 nsl 1800 1500 1500 nsl 390 nsl 390 nsl 390 nsl 390 23000	MSCC (mg/kg) nsi nsi nsi 290 nsi nsi nsi nsi nsi nsi 270 270 281 nsi nsi 270 182 nsi nsi nsi 183 184 185 185 185 185 185 185 185 185 185 185	15000 6.2 0.68 580 32 3.0 nsl 0.90 620 770 150 270 nsl 65 130 nsl 0.16 0.16 0.16 0.12	SB-2 (0-2) BPGL 67 0.89 0.31 970 29 67 18 960 7.1 680 BRGL BPGL 74 BRGL 39	Quelifier BH, E	RL 3.1 0.31 0.31 0.31 0.31 0.31 0.31 0.31	MDL 0.42 0.048 0.068 0.33 0.010 0.0065 0.80 0.011 1.8 0.032 0.33 0.058 1.5 0.058 1.5 0.0050 0.054 0.0050	SB-2 (2-4) BRL 110 0.96 BRL 910 27 55 18 990 9.1 780 BRL 74 BRL 74 BRL 36	QC Qualifier BH, E BH, E E Ab, B	RL 3.2 0.32 0.83 0.83 0.32 0.32 0.32 0.32 0.53 6.3 0.32 0.53 16 0.63 0.63 0.63 0.63 0.63 0.63 0.63	MDL 0.43 0.050 0.070 0.34 0.011 0.0067 0.82 0.043 0.0098 0.11 1.8 0.033 0.34 0.059 1.5 0.059 1.5 0.046 0.0052 0.046 0.0052	SB-3 (0-2) BRL 71 0.96 BRL 1300 25 62 8.7 1000 8.2 750 BRL 80 BRL 80 80 80 80 80 80 80 80 80 80 80 80 80	QC Quasifier BH, E BH, E	RL 3.2 0.32 0.32 0.32 0.32 0.32 0.32 0.32	MCL 0.44 0.051 0.071 0.34 0.011 0.0088 0.84 0.010 0.11 1.9 0.034 0.34 0.35 0.059 0.069 0.065 0.067 0.0053 0.071 0.0053	SB-3 (2-4) BRL 110 1.0 0.53 1500 18 43 42 780 6.0 4300 BRL BRL 77 BRL	OC Qualifier BH, E BH	RL 3.4 0.34 0.34 0.34 0.34 0.34 0.34 0.34	MDL 0.46 0.053 0.075 0.36 0.011 0.0072 0.88 0.011 0.12 2.0 0.0036 0.37 0.062 0.055 0.096 0.0055 0.99 0.0055 0.99 0.0065 0.046 0.0055 0.99 0.0068 0.011 0.046 0.0055	GW-4 (0-1) BRL 18 BRL BRL 220 22 1.1 9.3 680 9.1 9.3 440 BRL BRL BRL 53 880.	QC Qualifier	RL 860 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.	MDL 89 0.052 0.073 0.35 0.011 0.0089 0.85 0.045 0.010 0.036 0.000 0.000 1.6 0.000 0.000 1.6 0.000 0.000 1.6 0.000 0.000 1.6 0.000 0.000 1.6 0.000 0.000 1.6 0.000 0.000 1.6 0.000 0.000 1.0 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0	GW-4 (5-7) BRL 79 0.99 0.37 850 30 55 13 1100 8.8 770 8RL BRL 70 8RL BRL 70 8RL	QC Qualifier	13 0.33 0.33 0.66 1300 0.33 3.3 0.33 0.66 17 0.68	MDL 90 0.052 0.074 0.35 0.011 0.0070 0.86 0.045 0.010 0.025 1.6 0.062 1.6 0.062 1.6 0.048 0.0054 0.58 0.048 0.048 0.048	96 31 930 55 85 37 1300 42 1700 91	QC Qualifier	RL 640 0.32 0.32 0.64 0.32 0.32 0.32 0.64 1300 0.32 640 0.84 16 0.64 0.84 0.32 19 0.84	MIDL 86 0.050 0.071 0.34 0.011 0.008 0.43 0.0089 0.11 370 0.034 69 1.6 0.0052 0.006 0.0052 0.006 0.0052	GW-7 (2-4) 78 31 630 57 90 38 1600 40 1400		640 0.32 0.84 0.32 0.84 0.32 13 0.32 0.84 1300 0.32 0.84 16 0.64 16 0.64 16 0.32	MDL 87 0.050 0.071 0.34 0.011 0.001
	Mercury	11	nsi	1.0	0.060		0.024	0.0016	0.038		0.025	0.0016	0.077		0.027	0.0018	0.090		0.027	0.0018	0.084		0.024	0.0016	0.045		0.025	0.0016	0.057		0.026	0.0017	0.066		0.024	0.0016
	All Organic Results in a	mg/kg					Potential	Former Oil	Water Sepa	rator Area					Fo	ormer Paint	Storage Are										Forme	r Mechani	cal Shop A	reas						
	Acetone Naphthalene Trichloroffuoromethane	61000 3.8 23000	MSCC (mg/kg) 24 0.16 29	24 0.21 24	SB-1 (0-2) 0.063 BRL BRL		RL 0.067 0.011 0.0057	MOL 0.0014 0.00018 0.00037	GW-5 (0-1) BRL BRL BRL	QC Qualifier	RL 0.065 0.013 0.0065	MDL 0.0016 0.00021 0.00042	SB-2 (0-2) BRL BRL BRL	QC Qualifier	4.0077	MDL 0.0011 0.00015 0.00030	\$8-2 (2-4) 8RL 8RL 8RL	QC Qualifier	RL 0.043 0.0087 0.0043	MDL 0.0011 0.00014 0.00028	SB-3 (0-2) BRL BRL BRL		RL 0.048 0.0096 0.0048	MDL 0.0012 0.00015 0.00031	SB-3 (2-4) BRL BRL BRL		0.0047	MDL 0.0011 0.00015 0.00030	GW-4 (0-1) BRL BRL BRL	QC Qualifier	RL 0.054 0.011 0.0054	MOL 0.0013 0.00017 0.00035	GW-4 (5-7) BRL BRL 8RL		0.057 0	MDL 0.0014 0.00018 0.00037
	Acetone Naphthalene Trichloroffuoromethane	61000 3.8 23000	24 0.16 29	24 0.21 24	SB-6 (0-1) BRL BRL BRL	QC Qualifier	RL 0.050 0.010 0.0050	MDL 0.0012 0.00016 0.00032	Stained Floo SB-6 (2-4) BRL BRL BRL	Or Area QC Qualifier	RL 0.059 0.012 0.0059	MOL 0.0014 0.00019 0.00038	GW-1 (0-1) 0.092 BRL BRL	QC Qualifier	Fit. 0.058 0.012 0.0058	MDL 0.0014 0.00018 0.00038	Gasoline U: GW-1 (2-4) BRL BRL BRL BRL	ST Area QC Qualifier	RL 0.056 0.011 0.0056	MDL 0.0014 0.00018 0.00036	GW-2 (0-1) 0.052 0.027 0.0020	QC Qualifier	RL 0.047 0.0094 0.0047	MDL 0.0011 0.00015 0.00030	GW-2 (2-4) BRL BRL BRL	QC Qualifier	RL 0.047 0.0094	MEDL 0.0011 0.00015 0.00030	GW-3 (0-1) BRIL BRIL BRIL BRIL	QC Qualifier	RL 0.049 0.0097 0.0049	MDL 0.0012 0.00015 0.00031	GW-3 (4-6) BRL 0.0039 BRL	J	0.053 0 0.011 0	MOL 0.0013 0.00017 0.00034
VOCS	Acetone Naphthalene Trichlorofisoromethane	61000 3.8 23000	24 0.16 29	24 0.21 24	GW-6 (0-1) 0.27 BRL BRL		RL 0.048 0.0096 0.0048	MCL 0.0012 0.00015 0.00031	GW-6 (2-4) 0.079 BRL BRL	QC Qualifier		MDL 0.0015 0.00020 0.00040	GW-9 (0-1) 0.072 B/8L BR8L	QC Qualifier	RL 0.049 0.0098 0.0049	MDL 0.0012 0.00015 0.00032	GW-9 (4-5) 0.11 BRL BRL	QC Qualifier	RL 0.054 0.011 0.0054	MDL 0.0013 0.00017 0.00035	GW-10			MDL 0.0012 0.00015 0.00031	GW-10 (6-8) BRL BRL BRL			MDL 0.0013 0.00017 0.00035	GW-12 (0-1) 0.093 BRL BRL	QC Qualifier	RL 0.053 0.011 0.0053	MDL 0.0013 0.00017 0.00034	GW-12 (4-5) BRL BRL BRL BRL		0.065 (0.013 0	MCL 0.0016 0.00020 0.00042
	Acetone Naphthalene Trichlorofluoromethane	61000 3.8 23000	24 0.16 29	24 0.21 24	GW-7 (0-1) BRL BRL BRL	QC Qualifier	RL 0.044 0.0088 0.0044	MDL 0.0011 0.00014 0.00028	GW-7 (2-4) BRL BRL BRL	dechanical & QC Qualifier	RL 0.054 0.0054	MDL 0.0013 0.00017 0.00035	GW-11 (0-1) 0.10 BRL BRL	Transforme QC Qualifier	Rt. 0.056 0.011 0.0056	MDL 0.0014 0.00036																				
	(nenoronuorometriane	23000	æ	24	L BALL				Water Sepa	arator Area	0.0004	0.0000					Storage An	LA									Forme	r Machani	cal Shop A	reas						—
SVOCS	1. Methyksaphthalane 2. Methyksaphthalane Acenapthese Acenapthyse Anthracene Benzod, planthacene Benzod, hipryfene Benzod, hipryfene Benzod, hipryfene Benzod, hipryfene Benzod, hipryfene Benzod, hipryfene Benzod, hipryfene Benzod, hipryfene Benzod, hipryfene Benzod, hipryfene Debenzoden Plantenthere Plantenthere Plantenthere Plantenthere Plantenthere Plantenthere Plantenthere Plantenthere Plantenthere Plantenthere	18 240 3600 msi 18000 0.16 0.016 0.016 0.016 0.016 73 2400 0.16 3.8 nsi 1800	MSCC (mg/kg) 0.004 3.6 8.2 11 940 0.056 0.088 489 9 120 39 0.088 4.7 290 47 0.88 0.18 56 270	0.055 1.6 8.4 21 660 0.016 0.16 7800 1.6 130 16 0.016 5.2 330 56 0.16 0.16	\$8-1 (0-2) 0.34 1.5 BRL 2.5 4.0 3.9 4.6 2.2 3.7 0.51 0.80 8.4 0.98 2.4	Quelifier	RL 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	MCL 0.081 0.067 0.065 0.065 0.045 0.046 0.053 0.053 0.051 0.064 0.055 0.064 0.055 0.064 0.055 0.064 0.055	GW-5 (0-1) BRI. BRI. BRI. 0.17 0.56 0.68 0.43 0.44 BRI. 0.761 0.761 BRI. 1.3 BRI. 1.2 BRI. 1.2 BRI. 0.17 1.2 BRI. 0.17 1.2 BRI. 0.17 1.2 BRI. 0.17 1.2 BRI. 0.17 1.2 BRI. 0.17 1.2 BRI. 0.17 1.2 BRI. 0.17 1.2 BRI. 0.17 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	QC Qualifier	RL 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	MDL 0.081 0.067 0.067 0.068 0.068 0.068 0.049 0.049 0.046 0.055 0.053 0.053 0.051 0.064 0.064 0.064 0.064 0.064 0.064	SB-2 (0-2) BRIL BRIL BRIL BRIL BRIL BRIL BRIL BRIL	QC Qualifier	Rt. 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41	MDL 0.080 0.086 0.080 0.087 0.045 0.045 0.045 0.054 0.052 0.050 0.063 0.063 0.063 0.063 0.063 0.063 0.063 0.063	SB-2 (2-4) BRL BRI. BRI. BRI. 0.116 BRI. BRI. BRI. 0.18 BRI. BRI. 0.24 0.24	QC Qualifier	RL 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41	MDL 0.080 0.086 0.086 0.066 0.060 0.067 0.045 0.045 0.045 0.052 0.052 0.052 0.053 0.053 0.053 0.053 0.053 0.054	SB-3 (0-2) BRL BRL BRL BRL 0.23 0.54 0.49 0.26 BRL 0.49 BRL BRL BRL 0.71 0.97	QC Qualifier J J J	RL 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	MDL 0.082 0.088 0.061 0.088 0.063 0.086 0.049 0.047 0.036 0.033 0.052 0.085 0.061 0.061 0.061	SB-3 (2-4) BRL BRL BRL BRL BRL 0.22 0.13 BRL 0.36 BRL 0.36 BRL 0.19 0.40	QC Qualifier	Rt. 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.4	MDL 0.084 0.070 0.063 0.070 0.057 0.047 0.056 0.057 0.056 0.053 0.062 0.055 0.062 0.057 0.055 0.05	GW-4 (0-1) 0.15 0.22 0.87 1.4 2.3 1.7 2.2 0.85 0.92 BRL 1.8 0.24 4.5 0.36 0.98 0.18	QC Qualifier J J	RL 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	MOL 0.062 0.068 0.055 0.066 0.055 0.064 0.053 0.053 0.053 0.055 0.064 0.056 0.056 0.056 0.056 0.056 0.056 0.056	GW-4 (5-7) BRL BRL 10.17 0.74 1.3 2.1 1.5 0.077 0.64 BRL 1.7 0.22 0.34 4.2 0.25	1 1	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	MDL 0.006 0.071 0.061 0.065 0.072 0.068 0.069 0.066 0.

TABLE 2A: ANALYTES DETECTED IN SOIL KESLER MILL, NOVEMBER 4-8, 2015

													Former 1	5,000-Gallo	#6 Fuel C	AST Area	1								Γ		Forme	er Building	Stained Flo	or Area			1			
			MSCC (mg/kg)		SB-4 (0-1)	QC Qualifier	DI	MDL	SB-4 (4-5)	QC Qualifier	RI	MDL	SB-5 (0-1)	QC Qualifier	Ri	MDL	SB-5 (2-4)	QC Qualifier	RI	MDL	GW-8 (0-1)	QC Qualifier	RL	MDL	SB-6 (0-1)	QC Qualifier	RI	MDL	SB-6 (2-4)	QC Qualifier	RI	MDL	ĺ			
	-Methylnaphthalene -Methylnaphthalene -Methylnaphthalene conspicting - Methylnaphthalene conspicting - Methylnaphthalene - Methy	18 240 3600 0.16 nsi 18000 1.16 nsi 1.6 250000 1.6 250000 1.6 3.8 nsi 1800	0,004 3.6 8.2 11 940 0.35 0.088 0.88 489 9 120 39 0.088 4.7 290 47 0.88 0.18 56 270	0.055 1.8 8.4 21 660 0.16 0.016 0.016 0.16 130 16 0.016 5.2 330 56 0.16 0.21 68	0.17 BRI. BRI. 0.22 1.1 0.97 1.2 0.44 0.87 1.9 BRI. 1.9 BRI. 1.9 BRI. 1.9 BRI.	J	0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	0.082 0.088 0.061 0.068 0.065 0.049 0.049 0.068 0.036 0.053 0.064 0.064 0.064 0.064 0.064	BRI. BRI. BRI. BRI. BRI. BRI. BRI. BRI.	J	0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	0.052 0.076 0.062 0.077 0.062 0.055 0.055 0.052 0.062 0.068 0.072 0.068 0.072 0.068 0.072 0.061 0.065 0.072	0.14 BRL BRL BRL BRL BRL BRL 0.37 BRL 0.60 BRL BRL 0.60 BRL 0.60 SRL BRL 0.53	J	0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40	0.077 0.084 0.058 0.064 0.058 0.064 0.062 0.043 0.046 0.042 0.052 0.034 0.069 0.061 0.065 0.065 0.065 0.065 0.065	BRI BRI BRI BRI BRI BRI BRI BRI BRI BRI		0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51	0.082 0.082 0.082 0.074 0.082 0.065 0.055 0.056 0.066 0.064 0.062 0.078 0.063 0.063 0.063 0.063 0.065 0.078	0.63 BRL BRL 0.17 BRL 0.11 0.30 0.25 BRL 0.17 0.36 BRL 0.52 0.33	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	0.062 0.068 0.068 0.068 0.065 0.055 0.049 0.046 0.036 0.036 0.052 0.064 0.054 0.064 0.064 0.064	987L 97L 97L 97L 97L 97L 97L 97L 9	J	0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44	0.096 0.071 0.060 0.072 0.058 0.058 0.052 0.049 0.058 0.056 0.054 0.056 0.057 0.056 0.051 0.051	BRIL BRIL BRIL BRIL BRIL BRIL BRIL BRIL	- Constitution	0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44	0.054 0.070 0.063 0.070 0.063 0.070 0.057 0.051 0.063 0.057 0.055 0.065 0.065 0.065 0.065 0.065 0.065				
									 											Seneral Site				_					l				·			
SOAS EEE COURT FE III A FE	Metryhaphtalene Metryhaphtalene Metryhaphtalene competitione competitione competitione encodiptione encodipti	18 240 3600 msi 18000 0.16 0.016 0.18 msi 1.6 250000 15 2400 2400 2400 3.8 msi 1800	MSCC (mg/kg) 0.004 3.6 8.2 11 940 0.35 0.088 0.88 459 9 120 39 0.088 4.7 290 0.88 4.7 290 0.88 2.7 20 0.88 2.7 20 0.80 2.7 20 0.80 2.7 20 0.80 2.7 20 0.80 2.7 20 0.	0.095 1.6 8.4 21 660 0.16 0.016 7000 1.6 130 15 100 15 0.016 52 330 56 0.16 0.21 68	GW-2 (0-1) 0.25 0.70 0.17 1.8 4.6 4.1 5.2 2.4 BRIL 4.3 0.59 7.2 1.5 5.2 6.6	QC Qualifier J J	RL 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	MDL 0.081 0.087 0.087 0.088 0.055 0.046 0.049 0.046 0.055 0.036 0.051 0.081 0.084 0.061 0.068 0.055	GW-2 (2-4) BRI BRI BRI BRI BRI 0.15 BRI BRI BRI BRI BRI BRI BRI BRI BRI BRI	QC Quelifier	RL 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	MOL 0.080 0.067 0.067 0.060 0.067 0.065 0.046 0.065 0.063	GW-3 (0-1) 0.42 2.5 2.5 3.4 4.4 12 11 11 6.8 BRL 9.8 1.5 0.80 21 1.5 7.3	QC Qualifier	RL 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	MDL 0.062 0.068 0.068 0.061 0.066 0.28 0.23 0.25 0.045 0.066 0.036 0.052 0.064 0.27 0.064 0.27 0.064 0.28	GW3 (4-6) BRL 0.14 0.51 BRL 0.81 1.6 1.4 0.76 0.27 BRL 1.4 0.19 0.24 3.5 0.33	QC Qualifier J J J	RL 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47	MOL. 0.091 0.076 0.069 0.076 0.062 0.062 0.062 0.062 0.062 0.060 0.072 0.060 0.068 0.072 0.060 0.060 0.068 0.072 0.060 0.068 0.072 0.060 0.068 0.072 0.060 0.068 0.072 0.060 0.068 0.072 0.060 0.068 0.072 0.060 0.068 0	GW-6 (V-1) BRL BRL BRL 0.31 0.96 BRL 0.86 BRL 1.8 BRL 1.8 BRL	QC Qualifier	RL 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	MOL 0.078 0.065 0.055 0.059 0.053 0.044 0.047 0.047 0.047 0.051 0.062 0.062 0.058 0.058 0.058 0.058 0.058 0.058 0.058	GW-6 (2-4) 0.14 0.19 BRL 0.61 1.1 0.45 1.1 0.43 BRL 0.13 0.13 0.13 0.13 0.15 2.2 0.22	Quasifier J J J J	RL 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	MDL 0.082 0.068 0.056 0.061 0.065 0.049 0.049 0.056 0.052 0.052 0.052 0.064 0.064 0.061 0.061	GW-9 (W-1) BRIL BRIL BRIL 0.13 0.16 0.41 0.32 0.16 BRIL 0.43 BRIL 0.43 BRIL 0.43 0.16 BRIL 0.43	QC Qualifier	RL 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43	MOL 0.063 0.069 0.058 0.062 0.062 0.066 0.046 0.054 0.054 0.054 0.055 0.065 0.065 0.065 0.065 0.065 0.065	G.V.9 (4.6) B.R.L. B.R.L. B.R.	QC Qualifier	RL 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43	MDL 0.083 0.089 0.059 0.059 0.059 0.059 0.056 0.050 0.056 0.056 0.056 0.056 0.056 0.056 0.055 0.055 0.055 0.055 0.055 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056
									GW-10	••		General Site		3		1	011140					Owngradie: QC	nt of Forme	er Paint Sto	-		hop Areas			QC QC	r Sub-State	on Area				
2 A A A B B B B B B C D D F F Ir N F	Methyfraspirtialena Methyfraspirtialena Methyfraspirtialena Methyfraspirtialena Georgia Methyfraspirtialena Georgia Methyfrasa Met	18 2400 msl 18000 0.16 0.016 0.16 psl 1.8 250000 16 73 2400 2400 0.16 msl 1800	MSCC (mg/kg) 0.004 3.6 8.2 11 940 0.35 0.085 0.85 0.85 4.7 0.085 4.7 0.86 4.7 0.86 270	0.055 1.8 8.4 21 680 0.16 0.016 0.016 7800 1.8 130 16 0.016 5.2 330 56 0.16 6.2 130 16 5.2 320 56 0.21 68 220	GW-10 (0-1) BRL BRL BRL BRL BRL 0.18 0.19 0.18 0.19 0.18 0.19 0.18 0.19 0.18 0.19 0.18 0.19 0.18 0.19 0.18 0.19 0.18 0.19 0.18	QC Quelifier	RL 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	MOL 0.076 0.063 0.054 0.057 0.064 0.043 0.043 0.043 0.052 0.043 0.052 0.053 0.050 0.050 0.050 0.055 0.	(6-5) BRIL BRILL B	QC Qualifier	RL 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.4	MOL 0.085 0.070 0.060 0.064 0.071 0.065 0.061 0.068 0.068 0.068 0.063 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065	GW-12 (0-1) BAL BAL BAL BAL BAL BAL BAL BAL BAL BAL	QC Quelifier	RL 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	MOL. 0.092 0.077 0.065 0.065 0.053 0.063 0.060 0.063 0.063 0.060 0.065 0.077 0.065 0.077 0.065 0.073 0.061 0.069 0.059 0.065 0.077 0.065 0.062 0.063	GW-12 (4-5) BRIL BRIL BRIL BRIL BRIL BRIL BRIL BRIL	QC Qualifier	RL 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49	MOL. 0.094 0.078 0.067 0.0771 0.054 0.057 0.057 0.054 0.064 0.062 0.062 0.075 0.056 0.075 0.056 0.075 0.056 0.075 0.056 0.075 0.056 0.075 0.056 0.075 0.056 0.075 0.056 0.075 0.056 0.075 0.056 0.075 0.056 0.075 0.056 0.075	GW-7 (0-1) BRIL BRIL BRIL BRIL BRIL BRIL BRIL BRIL	Qualifier	RL 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41	MOL. 0.060 0.066 0.066 0.066 0.066 0.064 0.054 0.048 0.045 0.055 0.063 0.063 0.063 0.063 0.065 0	0.15 BRIL BRIL BRIL BRIL BRIL BRIL BRIL BRIL BRIL BRIL BRIL BRIL BRIL BRIL BRIL BRIL BRIL	QC Qualifier	RL 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	MDL 0.080 0.067 0.067 0.060 0.065 0.045 0.045 0.048 0.055 0.035 0.053 0.053 0.063 0.063 0.063 0.063 0.063	GW-11 (O-1) BRIL BRIL BRIL BRIL 0.15 BRIL 0.15 BRIL 0.30 BRIL BRIL 0.30 BRIL BRIL 0.30	Qualifier	RL 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43	MDL 0.084 0.089 0.089 0.083 0.070 0.057 0.057 0.057 0.057 0.053 0.063 0.063 0.063 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065				
							Potential :	Former Oil	Water Sepa			1				1				1			ormer 15,0	00-Gallon a				ĺ	1			1				
					SB-1 (0-2)	QC Qualifier	RL	MDL	GW-5 (0-1)	QC Qualifier	RL	MOL	SB-4 (0-1)	QC Qualifier	RL.	MDL	SB-4 (4-6)	QC Qualifier	RL	MDL	\$8-5 (0-1)	QC Qualifier	RL	MDL	SB-5 (2-4)	QC Qualifier	RL	MOL	GW-8 (0-1)	QC Qualifier	RL	MDL	GW-8 (4-6)	QC Qualifier	RL	MDL
TOTAL PETROLEUM HYDROCARBO	Diesel Range Organics	10					8.9	1.1			8,9	1.1			9.0	1.1	BRL.		10	1.3			8.5	1.1	BRIL		11	1.4			27	3.4	BRL.		9.6	1.2

MSCCs: Maximum Soil Contaminant Concentrations, most stringent of soil-to-water and residential, revised 4/19/12
IHSB PSRS: Inactive Hazardous Stee Stranch Prehiminary Soil Remediation Goal, most stringent of residential health-based and protection of groundwater, revised September 2015
Residential Soil RSI: Rais-Based Screening Level, most stringent of carcinopanic and non-carcinogenic St., nv/sed November 2015
not: No Screening Level
RSI: Residential Soil RSI: Rais-Based Screening Level, most stringent of carcinopanic and non-carcinogenic St., nv/sed November 2015
RSI: Below Respecting Limit

BH: MB greater than one half the RL, but sample concentrations are > 10x the MB E: estimated concentration above the calibration range J: detected but below the RL; read is an estimated concentration Ab: CCV recoveries are greater than upper control first; result is reported with potential high bies

TABLE 2B: ANALYTES DETECTED IN GROUNDWATER KESLER MILL, NOVEMBER 10-13, 2015

All Metals Results in mg/L

			GCL			QC				QC		
			(mg/L)		GW-4	Qualifier	RL.	MDL	GW-7	Qualifier	_ RL	MDL
	Auminum	nsi	nsi	0.087	BRL		0.10	0.038			0.10	0.038
	Barium	0.7	700	2000	0.15		0.010	0.00070	0.12		0.010	0.00070
	Calcium	ns	กรเ	nsi	1.2		0.20	0.023	42		0.20	0.023
	Cobalt	nsl	ns!	0.0041		l	0.0050	0.000080	BRL		0.0050	0.000080
ď	Copper	1	nsi	0.07	0.014	_	0.010	0.0019	0.019		0.010	0.0019
뒫	Iron	0.3	nsl	10.0	BRL		0.10	0.011		ı	0.10	0.011
6	Magnesium	nsi	nsí	ъ	1.4		0.10	0.0019	19		0.10	0.0019
Ξ	Manganese	0.05	nsi	ம		i .	0.010	0.0016		l	0.010	0.0016
	Potassium	nsi	nsi	LD	3.2	_	0.50	0.047	2.6	_	0.50	0.047
	Sodium	nsl	nsi	LD	17		0.50	0.0070	16		0.50	0.0070
	Vanadium	nsi	nsi	LD	BRL		0.0050	0.00030	0.011		0.0050	0.00030
	Zinc '	1	nsi	0.5	0.15		0.030	0.0033	0.11		0.030	0.0033

All Organic Results in ug/L

		GCL			QC				QC				QC				QC				QC				QC		- 1
		(ug/L)		GW-1	Qualifier	RL	MDL	GW-2	Qualifier	RL	MDL	GW-3	Qualifier	RL	MDL	GW-4	Qualifier	RL	MDL	GW-5	Qualifier	RL	MDL	GW-6	Qualifier	RL	MDL
1,1,1-Trichloroethane	200	200000	25000	BRL		0.50	0.061	BRL		0.50	0.061	BRL		0.50	0.061	0.64		0.50	0.061	BRL		0.50	0.061	BRL		0.50	0.061
1,1-Dichloroethane	6	6000	1000	BRL		0.50	0.083	BRL		0.50	0.083	BRL		0.50	0.083	0.63		0.50	0.083	BRL		0.50	0.083		l	0.50	0.083
1,1-Dichloroethylene	350	350000	15000	BRL		0.50	0.083	9.8		0.50	0.083	BRL		0.50	0.083	0.54		0.50	0.083	15		0.50	0.083	65	•	0.50	0.083
Acetone	6000	6000000	20000	BRL		5.0	0.31	26		5.0	0.31	BRL		5.0	0.31	130		5.0	0,31	BRL		5.0	0.31	6.5		5.0	0.31
Chloroform	70	70000	1700	BRL		0.50	0.076	0.55		0.50	0.076	BRL		0.50	0.076	BRL		0.50	0.076	1.4		0.50	0.076	0.90		0.50	0.076
Chloromethane	3	3000	960	BRL		0.50	0.079	BRL		0.50	0.079	1.3		0.50	0.079	BRL		0.50	0.079	BRL		0.50	0.079	BRL		0.50	0.079
Methyl-tert-Butyl Ether	20	20000	15000	1.6		0.50	0.042	BRL		0.50	0.042																
Trichlorofluoromethane	2000	2000000	670000	BRL		0.50	0.062	0.64		0.50	0.062	2.9		0.50	0.062	BRL		0.50	0.062	0.68		0.50	0.062	BRL		0.50	0.062
បី																											

Methyl-tert-Butyl Ether Trichlorofluoromethane	2000	20000 2000000	670000	1.6 BRL		0.50	0.042	0.64		0.50	0.042	2.9		0.50	0.042	BRL		0.50	0.042	0.68		0.50	0.042
			!		oc				QC				QC				QC				QC .		
				GW-7	Qualifier	RL	MDL	GW-9	Qualifier	RL	MDL	GW-10	Qualifier	RL_	MDL	GW-11	Qualifier	RL	MDL	GW-12	Qualifier	RL	MDL
1,1,1-Trichloroethane	200	200000	25000	BRL		0.50	0.061	BRL		0.50	0.061	BRL		0.50	0.061	BRL		0.50	0.061	BRL		0.50	0.061
1,1-Dichloroethane	6	6000	1000	3.5		0.50	0.083	BRL		0.50	0.083	BRL		0.50	0.083	BRL		0.50	0.083	BRL		0.50	0.083
1,1-Dichloroethylene	350	350000	15000	8.6		0.50	0.083	BRL		0.50	0.083	BRL		0.50	0.083	0.92		0.50	0.083	BRL		0.50	0.083
Acetone	6000	6000000	20000	51		5.0	0.31	10		5.0	0.31	43		5.0	0.31	48		5.0	0.31	BRL		5.0	0.31
Chloroform	70	70000	1700	BRL		0.50	0.076	BRL		0.50	0.076	8RL		0.50	0.076	BRL		0.50	0.076	BRL		0.50	0.076
Chloromethane	3	3000	960	1.3		0.50	0.079	BRL		0.50	0.079	BRL		0.50	0.079	BRL		0.50	0.079	0.92		0.50	0.079
Methyl-tert-Butyl Ether	20	20000	15000	BRL		0.50	0.042	BRL		0.50	0.042	BRL		0.50	0.042	BRL.		0.50	0.042	BRL		0.50	0.042
Trichlorofluoromethane	2000	2000000	670000	BRL		0.50	0.062	1.4		0.50	0.062	2.1		0.50	0.062	BRL		0.50	0.062	0.76		0.50	0.062

^{2).} Standard and GCL. NCDEQ 15A NCAC 2L.0202 and Gross Contamination Levels, revised 9/18/14 (or 4/1/13 if no GCL indicated)
2B Standard. NCDEQ 15A NCAC 2B or EPA National Criteria: most stringent of freshwater and human health standards (for Class C surface water body. Town Creek), revised 5/15/13
LD limited data available
six No Screening Level
BRL: Below Reporting Limit

TABLE 2C: ANALYTES DETECTED IN SEDIMENT KESLER MILL, NOVEMBER 16, 2015

	All Organic Results in m	ig/kg										., , .								
			MSCC (mg/kg)		SS-1	QC Qualifier	RL	MDL	SS-2	QC Qualifier	RL	MDL	SS-3	QC Qualifier	RL_	MDL	SS-4	QC Qualifier	RL	MDL
Λος	Acetone	61000	24	24	13		2800	530	0.54	E	0.076	0.0019	10		1300	250	1.6		1000	190
			MSCC (mg/kg)		SS-1	QC Qualifier	RL	MDL	SS-2	QC Qualifier	RL	MDL	SS-3	QC Qualifier	RL	MDL	SS-4	QC Qualifier	RL	MDL
	Anthracene	18000	940	660	BRL		0.48	0.078	0.20	J	0.53	0.085	0.34	J	0.44	0.072	0.15	j	0.45	0.072
	Benzo(a)anthracene	0,16	0.35	0.16	0.16	J	0.48	0.063	0.60		0.53	0.069	0.76		0.44	0.058	0.39	J	0.45	0.059
	Benzo(a)pyrene	0.016	0.088	0.016	0.13	J	0.48	0.052	0.58	_	0.53	0.057	0.63		0.44	0.048	0.34	_ J	0.45	0.049
	Benzo(b)fluoranthene	0.16	0.88	0.16		J	0.48	0.056			0.53	0.062	1.0		0.44	0.052			0.45	0.052
•	Benzo(g,h,i)perylene	nsi	469	7800	BRL		0.48	0.053	0.39	j	0.53	0.058	0.36	J	0.44	0.049	0.22	J	0.45	0.049
Ö	Benzo(k)fluoranthene	1.6	9	1.6	BRL		0.48	0.063	0.32	J	0.53	0.070	0.37	J	0.44	0.058	0.20	J	0.45	0.059
Š	Bis(2-Ethylhexyl)phthalat	39	6.6	7.2	BRL		0.48	0.072	0.22	J	0.53	0.079	BRL		0.44	0.066	BRL		0.45	0.067
o	Chrysene	16	39	16	0.16	j	0.48	0.061	0.69		0.53	0.067	1.3		0.44	0.056	0.41	j	0.45	0.057
	Fluoranthene	2400	290	330	0.33	J	0.48	0.062	1.7	_	0.53	0.068	2.3	_	0.44	0.057	1.1	_	0.45	0.057
	Indeno(1,2,3-cd)pyrene	0.16	0.88	0.16	BRL		0.48	0.056		J	0.53	0.061		J	0.44	0.051		J	0.45	0.052
	Phenanthrene	nsi	56	68	0.18	j	0.48	0.063	0.91		0.53	0.069	1.3		0.44	0.058	0.72		0.45	0.058
	Pyrene	1800	270	220	0.30	J	0.48	0.064	1.1		0.53	0.070	1.6		0.44	0.059	0.73		0.45	0.059

MSCCs: Maximum Soil Contaminant Concentrations, most stringent of soil-to-water and residential, revised 4/16/12

HISB PSRG: Inactive Hazardous Sites Branch Preliminary Soil Remediation Goal, most stringent of residential health-based and protection of groundwater, revised September 2015 Residential Soil RSL: Risk-Based Screening Level, most stringent of carcinogenic and non-carcinogenic SL, revised November 2015

nsl: No Screening Level

BRL: Below Reporting Limit

E: estimated concentration above the calibration range

J: detected but below the RL; result is an estimated concentration

TABLE 2D: ANALYTES DETECTED IN SURFACE WATER KESLER MILL, NOVEMBER 13, 2015

All Organic Results in ug/L

								QC				QC				QC		1
			SS-1	QC Qualifier	RL	MDL	SS-2	Qualifier	RL	MDL	SS-3	Qualifier	RL	MDL	SS-4	Qualifier	RL	MDL
	1,1-Dichloroethane	100	BRL		0.50	0.083	BRL		0.50	0.083	BRL		0.50	0.083	0.69		0.50	0.083
, so	1,1-Dichloroethylene	1500	BRL		0.50	0.083	2.2		0.50	0.083	2.6		0.50	0.083	3.2		0.50	0.083
8	Bromodichloromethane	17	1.9		0.50	0.062	BRL		0.50	0.062	BRL		0.50	0.062	BRL		0.50	0.062
>	Chloroform	170	8.3		0.50	0.076	2.2		0.50	0.076	1.6		0.50	0.076	1.6		0.50	0.076
	Chloromethane	96	1.1		0.50	0.079	0.60		0.50	0.079	BRL		0.50	0.079	BRL		0.50	0.079

2B Standard: NCDEQ 15A NCAC 2B or EPA National Criteria; most stringent of freshwater and human health standards (for Class C surface water body, Town Creek), revised 5/15/13 BRL: Below Reporting Limit

TABLE 3: MONITOR WELL CONSTRUCTION AND GROUNDWATER ELEVATION DATA KESLER MILL

Monitor Well ID	Date Installed	Date Gauged	Screen Interval (feet below grade)	Total Well Depth (feet below grade)	Top of Casing Elevation (feet above mean sea level)	Depth to Groundwater (feet below top of casing)	Groundwater Elevation (feet above mean sea level)	Notes
GW-1	11/2/2015	1/20/2016	4-19	19	717.34	4.84	712.50	
GW-2	11/4/2015	1/20/2016	2-12	12	715.18	7.23	707.95	aboveground finish
GW-3	11/3/2015	1/20/2016	5-20	20	726.31	12.69		aboveground finish
GW-4	11/3/2015	1/20/2016	9-24	24	735.32	18.84	716.48	aboveground finish
GW-5	11/4/2015	1/20/2016	1-11	11	709.75	2.43	707.32	aboveground finish
GW-6	11/4/2015	1/20/2016	3-13	13	711.53	5.67	705.86	aboveground finish
GW-7	11/4/2015	1/20/2016	3-18	18	709.39	2.10	707.29	
GW-8	11/4/2015	1/20/2016	5-20	20	721.69	11.66	710.03	aboveground finish
GW-9	11/3/2015	1/20/2016	9-24	24	730.15	19.14	711.01	aboveground finish
GW-10	11/5/2015	1/20/2016	5-30	30	729.70	21.05	708.65	aboveground finish
GW-11	11/5/2015	1/20/2016	2-12	12	709.54	3.75	705.79	aboveground finish
GW-12	11/5/2015	1/20/2016	14-29	29	725.78	20.41	705.37	aboveground finish

	GW-4 (5-7)	RDL	MDL	Duplicate-01	RDL	MDL	Value 1	Velue 2	Absolute Difference	is max detection > 5*RDL	Difference to	Precision Based on Diff/RDL*	RPD%	Precision based on RPD%**
Alumainum	(5-7)	660	90	Duplicate-01	3.3	0.45	29000	Value 2 31000	2000		7.0	DITIKUL		
Aluminum										yes	Calc. RPD%		6.666667	Acceptable
Arsenic		0.33	0.074		0.33	0.073	3.1	2.7	0.4	yes	Calc. RPD%		13.7931	Acceptable
Barium	79	0.66	0.35	30	0.66	0.35	79	30	49	yes	Calc. RPD%		89.90826	High
Beryllium	0.99	0.33	0.011	1.2	0.33	0.011	0.99	1.2	0.21	no	0.32	Acceptable		
Cadmium	0.37	0.33	0.0070	0.36	0.33	0.0070	0.37	0.36	0.01	no	0.02	Acceptable		
Calcium	850	13	0.86	590	13	0.86	850	590	260	yes	Calc. RPD%		36.11111	Slightly High
Chromium	30	0.33	0.045	23	0.33	0.045	30	23	7	yes	Calc. RPD%		26.41509	Acceptable
Cobalt		0.33	0.010		0.33	0.010	21	11	10	yes	Calc. RPD%		62.5	High
Copper	55	0.66	0.12	50	0.66	0.11	55	50	5	yes	Calc. RPD%		9.52381	Acceptable
Iron		1300	390		6.6	1.9	68000	51000	17000	yes	Calc. RPD%		28.57143	Acceptable
Lead	13	0.33	0.035	11	0.33	0.035	13	11	2	yes	Calc. RPD%		16.66667	Acceptable
Magnesium	1100	3.3	0.36	720	3.3	0.36	1100	720	380	yes	Calc. RPD%		41.75824	Slightly High
Manganese		0.33	0.061		0.33	0.060	410	660	250	yes	Calc. RPD%		46.72897	Slightly High
Nickel	8.8	0.66	0.062	6.2	0.66	0.062	8.8	6.2	2.6	yes	Calc. RPD%		34.66667	Acceptable
Potassium	770	17	1.6	640	16	1.6	770	640	130	yes	Calc. RPD%		18.43972	Acceptable
Sodium	70	20	0.58	83	20	0.58	70	83	13	no	0.33	Acceptable		
Vanadium		0.33	0.011		0.33	0.011	120	160	40	yes	Calc. RPD%		28.57143	Acceptable
Zinc	36	3.3	0.040	38	3.3	0.040	36	38	2	yes	Calc. RPD%		5.405405	Acceptable
Mercury	0.045	0.025	0.0016	0.088	0.026	0.0017	0.045	0.088	0.043	no	0.83	Acceptable		
1-Methylnaphthalene	BRL	0.45	0.086		0.44	0.085	0.086	1.1	1.014	no	1.13	Slightly High		
2-Methylnaphthalene	BRL	0.45	0.071	1.2	0.44	0.071	0.071	1.2	1.129	no	1.25	Slightly High		
3/4-Methylphenol	BRL	0.45	0.055	0.15J	0.44	0.055	0.055	0.15	0.095	no	0.11	Acceptable		
Acenaphthene	0.17J	0.45	0.061	1.7	0.44	0.060	0.17	1.7	1.53	no	1.70	Slightly High		
Acenaphthylene	0.74	0.45	0.065	5.0	0.44	0.064	0.74	5	4.26	yes	Calc. RPD%		148.4321	High
Anthracene	1.3	0.45	0.072	8.2	0.44	0.071	1.3	8.2	6.9	yes	Calc. RPD%		145.2632	High
Benzo(a)anthracene	2.1	0.45	0.058	18	4.4	0.58	2.1	18	15.9	no	1.81	Slightly High		
Benzo(a)pyrene	1.5	0.45	0.048	13	4.4	0.48	1.5	13	11.5	no	1.31	Slightly High		
Benzo(b)fluoranthene	2.0	0.45	0.052	16	4.4	0.51	2	16	14	no	1.59	Slightly High		
Benzo(g,h,i)perylene	0.77	0.45	0.049	5.0	0.44	0.049	0.77	5	4.23	yes	Calc. RPD%		146.6205	High
Benzo(k)fluoranthene	0.64	0.45	0.058		0.44	0.058	0.64	6.1	5.46	yes	Calc. RPD%		162.0178	High
Chrysene	1.7	0.45	0.056	16	4.4	0.56	1.7	16	14.3	no	1.63	Slightly High		
Dibenzo(a,h)anthracene	0.22J	0.45	0.054	1.5	0.44	0.054	0.22	1.5	1.28	no	1.42	Slightly High		
Dibenzofuran	0.34J	0.45	0.068	3.5	0.44	0.067	0.34	3.5	3.16	yes	Calc. RPD%		90.28571	High
Fluoranthene	4.2	0.45	0.057	3.2	0.44	0.057	4.2	3.2	1	yes	Calc. RPD%		27.02703	Acceptable
Fluorene	0.25J	0.45	0.064	2.4	0.44	0.064	0.25	2.4	2.15	yes	Calc. RPD%		89.58333	High
Indeno(1,2,3-cd)pyrene		0.45	0.051	6.2	0.44	0.051	0.85	6.2	5.35	yes	Calc. RPD%		151.773	High
Naphthalene	0.13J	0.45	0.072		0.44	0.071	0.13	1.3	1.17	no	1.30	Slightly High		
Phenanthrene	3.6	0.45	0.058	38	4.4	0.58	3.6	38	34.4	yes	Calc. RPD%		165.3846	High
Pyrene	3.6	0.45	0.059	34	4.4	0.59	3.6	34	30.4	ves	Calc. RPD%		161.7021	High

TABLE 4: QUALITY CONTROL PRECISION ANALYSIS KESLER MILL

			Γ						I	is max		Precision		Precision
	GW-5		[·		ſ	1	1	Absolute	detection >	Difference to	Based on	j	based on
	(0-1)	RDL	MDL	Duplicate-02	RDL	MDL	Value 1	Value 2	Difference	5*RDL	RDL Ratio	Diff/RDL*	RPD%	RPD%**
1-Methylnaphthalene	BRL	0.42	0.081		0.42	0.080	0.081	0.12	0.039	no	0.05	Acceptable		
2-Methylnaphthalene	BRL	0.42	0.067	0.16J	0.42	0.067	0.067	0.16	0.093	no	0.11	Acceptable		
Acenaphthene	BRL	0.42	0.057	0.29J	0.42	0.057	0.057	0.29	0.233	no	0.28	Acceptable		
Anthracene	0,17J	0.42	0.068	0.60	0.42	0.067	0.17	0.6	0.43	no	0.51	Acceptable		
Benzo(a)anthracene	0.66	0.42	0.055	1.3	0.42	0.054	0.66	1.3	0.64	no	0.76	Acceptable		
Benzo(a)pyrene	0.66	0.42	0.045	1.2	0.42	0.045	0.66	1.2	0.54	no	0.64	Acceptable		
Benzo(b)fluoranthene		0.42	0.049	1.5.	0.42	0.048	0.87	1.5	0.63	no	0.75	Acceptable		
Benzo(g,h,i)perylene	0.43	0.42	0.046	0.70	0.42	0.046	0.43	0.7	0.27	no	0.32	Acceptable		
Benzo(k)fluoranthene	0.44	0.42	0.055	0.56	0.42	0.055	0.44	0.56	0.12	no	0.14	Acceptable		
Benzoic Acid	BRL	0.42	0.035	0.19J	0.42	0.035	0.035	0.19	0.155	no	0.18	Acceptable		
Chrysene	0.76	0.42	0.053	1.3	0.42	0.052	0.76	1.3	0.54	no	0.64	Acceptable		
Dibenzo(a,h)anthracene	0.11J	0.42	0.051	0.17J	0.42	0.051	0.11	0.17	0.06	no	0.07	Acceptable		
Dibenzofuran	BRL	0.42	0.064	0.15J	0.42	0.063	0.064	0.15	0.086	no	0.10	Acceptable		
Fluoranthene	1.3	0.42	0.053	2.8	0.42	0.053	1.3	2.8	1.5	yes	Calc. RPD%		73.17073	High
Fluorene	BRL	0.42	0.060	0.21J	0.42	0.060	0.060	0.21	0.15	no	0.18	Acceptable		
Indeno(1,2,3-cd)pyrene		0.42	0.048		0.42	0.048	0.43	0.75	0.32	no	0.38	Acceptable		
Naphthalene	BRL.	0.42	0.067		0.42	0.067	0.067	0.22	0.153	no	0.18	Acceptable		
Phenanthrene	0.62	0.42	0.054	2.2	0.42	0.054	0.62	2.2	1.58	yes	Calc. RPD%		112.0567	High
Pyrene	1.2	0.42	0.055	2.5	0.42	0.055	1.2	2.5	1.3	yes	Calc. RPD%		70.27027	High
Diesel Range Organics		8.9	1.1		8.8	1.1	73	. 51	22	yes	Calc. RPD%		35.48387	Slightly High
Acetone	BRL	0.065	0.0016	0.074	0.048	0.0012	0.0016	0.074	0.0724	no	0.56	Acceptable		

^{*} Difference to RDL Ratio: < 1 "Acceptable"; > 1 < 2 "Slightly High"; > 2 "High" ** RPD%: < 35 "Acceptable"; > 35 < 50 "Slightly High"; > 50 "High"

	Former Kesler Mill/Fieldcrest Cannon Plant #7 Phase II Environmental Site Assessment (E.
ADDENDIV A.	Dering Logo and Wall Construction Pagerda
APPENDIX A:	Boring Logs and Well Construction Records
February 16, 2016	
i estuary 10, 2010	Cardno

			SUBSU	JRFACE EXPLORATION LOG	
PROJECT NAME:	Former Kesler Mill			BORING ID: SB-1	
PROJECT NO.:	PB000900A			DATE(S) DRILLED: 11/6/2015	
PROJECT LOCATION:		King Jr. Ave.		DRILLING CONTR: TerraSonic International	
	Salisbury, NC			DRILL METHOD: DPT with 5 foot macro cores	
				REMARKS:	
CLIENT:	City of Salisbury				
LOGGED BY:	BB				
L			T ====:		
SOIL S	AMPLING CONDITION	NS	DEPTH (FT)	SUBSURFACE MATERIALS & CONSTRUCTION INFORMATION	REMARKS
Sample Interval	PID Reading (ppb)	USCS	0.0	Land Surface	Lab sample, water depth, etc.
	1293		2.0	Brown red silty firm CLAY, moist	
	 		 		
	 		 		
				}	
					1
,					
					

Cardno
Shaping the Future

		SUBSURFACE EXPLORATION AT 1	FION LOG	
PROJECT NAME:	Former Kesler Mill	BORING ID:	SB-2	
PROJECT NO.:	PB000900A	DATE(S) DRILLED:	11/6/2015	
PROJECT LOCATION:	423 N. Martin Luther King Jr. Ave.	DRILLING CONTR:	TerraSonic International	
	Salisbury, NC	DRILL METHOD:	DPT with 5 foot macro cores	
		REMARKS:		
CLIENT:	City of Salisbury			
LOGGED BY:	BB			

SOIL	SAMPLING CONDITION	ITIONS DEPTH (FT) SUBSURFACE MATERIALS & CONSTRUCTION INFORMATION REMARKS		REMARKS	
. Sample Interval	PID Reading (ppb)	USCS	0.0	Land Surface	Lab sample, water depth, etc.
	893		2.0	Asphalt then red brown silty, firm CLAY, dry	
	2860		5.0	Light red brown silty, firm CLAY, moist	

				JRFACE EXPLORATION LOG	
PROJECT NAME:	Former Kesler Mill			BORING ID: SB-3	
PROJECT NO.:	PB000900A			DATE(S) DRILLED: 11/6/2015	
PROJECT LOCATION:		King Jr. Ave.		DRILLING CONTR: TerraSonic International	
	Salisbury, NC			DRILL METHOD: DPT with 5 foot macro cores	
				REMARKS:	
CLIENT:	City of Salisbury			1	
LOGGED BY:	BB			<u> </u>	
			PERTU	,	
SOIL S	SAMPLING CONDITION	NS	DEPTH (FT)	SUBSURFACE MATERIALS & CONSTRUCTION INFORMATION	REMARKS
		Т	- (F1)		
Sample Interval	PID Reading (ppb)	uscs	0.0	Land Surface	Lab sample, water depth, etc.
	3024		2.0	Asphalt then red brown silty, firm CLAY, dry	
	2772		5.0	Yellow brown silty, firm CLAY with black mottling, moist	
	 	 	 		<u> </u>
		· '			
		 	 		
		1			
	 	 '	 	1	1
		!			i I
		<u> </u>			i
!	1				
	ļ	 			1
ı		1			i
					j i
I		1		1	
	لل		نــــــــــــــــــــــــــــــــــــــ		

CardnoShaping the Future

		SUBSURFACE EXPLORAT	TION LOG	
PROJECT NAME:	Former Kesler Mill	BORING ID:	SB-4	
PROJECT NO.:	PB000900A	DATE(S) DRILLED:	11/6/2015	
PROJECT LOCATION:	423 N. Martin Luther King Jr. Ave.	DRILLING CONTR:	TerraSonic International	
	Salisbury, NC	DRILL METHOD:	DPT with 5 foot macro cores	
		REMARKS:		
CLIENT:	City of Salisbury		•	
LOGGED BY:	BB			

SOIL	SAMPLING CONDITIONS	S	DEPTH (FT)	SUBSURFACE MATERIALS & CONSTRUCTION INFORMATION	REMARKS
Sample Interval	PID Reading (ppb)	USCS	0.0	Land Surface	Lab sample, water depth, etc.
	2532		2.0		
	2934		4.0	Asphalt then red brown silty, firm CLAY, dry	
	3150		6.0		
	3095		8.0	Red brown silty, firm CLAY, moist	
	2921		10.0	Red brown silty firm CLAY with black mottling	

<u> </u>		SUBSURFACE EXPLORAT	TON LOG	
PROJECT NAME:	Former Kesler Mill	BORING ID:	SB-5	
PROJECT NO.:	PB000900A	DATE(S) DRILLED:	11/6/2015	
PROJECT LOCATION:	423 N. Martin Luther King Jr. Ave.	DRILLING CONTR:	TerraSonic International	
	Salisbury, NC	DRILL METHOD:	DPT with 5 foot macro cores	
		REMARKS:		
CLIENT:	City of Salisbury			İ
				•

LOGGED BY: BB

SOIL	SAMPLING CONDITION	NS	DEPTH (FT)					
Sample Interval	PID Reading (ppb)	uscs	0.0	Land Surface	Lab sample, water depth, etc			
	2066		2.0	Asphalt then red brown silty, firm CLAY, dry				
	4665		4.0	Aspirature Fra Brown silly, Illin GEAT, dry				
	3115		6.0	Light red brown silty CLAY				
	3320		8.0	Light red brown silty CLAY, moist				
	3109		10.0	Light red brown silty CLAY with black mottling, moist				

		SUBSURFACE EXPLORAT	TION LOG	
PROJECT NAME:	Former Kesler Mill	BORING ID:	SB-6	
PROJECT NO.:	PB000900A	DATE(S) DRILLED:	11/6/2015	
PROJECT LOCATION:	423 N. Martin Luther King Jr. Ave.	DRILLING CONTR:	TerraSonic International	
:	Salisbury, NC	DRILL METHOD:	DPT with 5 foot macro cores	
	•	REMARKS:		
CLIENT:	City of Salisbury			
LOGGED BY:	BR			

SOIL	SAMPLING CONDITIONS	ITIONS DEPTH (FT) SUBSURFACE MATERIALS & CONSTRUCTION INFORMATION REMARKS		REMARKS	
Sample Interval	PID Reading (ppb)	USCS	0.0	Land Surface	Lab sample, water depth, etc.
	1315		2.0	Asphalt then dark brown silty CLAY, moist	
	2036		4.0		
	1597		6.0		
	750		8.0	Brown/light brown silty CLAY, damp	
	1727		10.0		
	1415		12.0		
	1632		15.0	Tan silty CLAY and partially weathered rock, damp	
	·		_		

						SOIL BORING LOG				
PROJECT N		Former Kesl					BORING I.D.: GW-1			
PROJECT N	0.:	PB0010900/	٩				DATE(S) DRILLED: 11/2/2015			
					-					
PROJECT LO	OCATION:	423 N. Mar		her Ki	ng Jr. A	ve.	DRILLING CONTR.: TerraSonic International			
		Salisbury, N	1C				DRILL METHOD: HSA			
							BORING DIAMETER: ~8"			
		City of Call								
CLIENT:		City of Salis	bury				SAMPLING METHOD/INTERVAL: Macro Core/5 feet			
LOGGED BY	:	ВВ					REMARKS: Total well depth: 19 ft bgs; screened: 4-19 ft bgs			
DESCRIPTIV	/E LOG (pa	ige 1 of 1)								
SAMPLE INTERVAL	uscs	PID/FID		GRAPHIC		DEPTH	DESCRIPTION OF MATERIAL			
INTERVAL		(ppb)	THE WAR	COLUMN		(FT) 1.0	DESCRIPTION OF MATERIAL			
			<i>MANATATIKITI</i>			2.0				
			احجا]	سنبال سنبال السنبيدارا		Asphalt then red brown silty CLAY, dry			
						4.0				
		345	l			5.0				
 		<u> </u>				6.0				
 		 				7.0 8.0	Red brown silty CLAY, gray black mottling, dry			
 -		1	[[9.0	Tree brown silty OLAT, gray black mottling, dry			
		0	1	1		10.0				
)	ļ		11.0				
]			12.0				
		↓	İ	1			Light gray CLAY, moist			
 		1 0	Ì			14.0 15.0				
 -		1	}			16.0				
		 	Ì			17.0				
			1	1	1		Brown silty CLAY, black mottling, moist			
			İ			19.0				
		0				20.0				
			{			21.0	Boring terminated at 20 feet bgs and well materials raised one foot			
		 	ł			23.0	Well completed with flush to grade, steel well cover			
		 	†			24.0				
		 	1			25.0				
]			26.0	1			
			1			27.0				
 			ļ			28.0	<u>.</u>			
		 	-			29.0 30.0				
 -		+	1			31.0	.			
		 	1			32.0	1			
			1			33.0				
]			34.0				
			1			35.0				
 			1			36.0	4			
 			-			37.0	3			
├ ───		 	-			39.0	4			
		 	1			40.0				
DRILLING METHODS 6S-SPLIT SPOON		bgs= BELOW GROUND S	URFACE		T					
AIR - AIR ROTARY CFA - CONTINUOUS I	LIGHT AUGER	GRAPHIC COLUMN	DEPTH TO	WATER	1					
DC - DRIVEN CASING HA - HAND AUGER HSA - HOLLOW STEN	AUGER			ER	1		() Cardno			
MD - MUD DRILLING RC - ROCK CORING WR - WATER ROTAR			BENTON	ITE	1		Shaping the Future			
SAMPLING METHO GP-GEOPROBE	DS.		SAND		1		Sushing me Larme			
							10988 Richardson Road			
SPLIT SPOON							Mago Dicustoson Rosii			
SPLIT SPOON			SCREEN		1		Ashland, Virginia 23005			

DESCRIPTIVE LOG (page 1 of 1) SAMPLE USCS PIDHID (pgb) 688 100 688 100 688 100 688 100 689 100 689 100 680 1100 680 68						SOIL	BORING LOG	
PROJECT LOCATION A23 N. Martin Luther King Jr. Ave. Salisbury, NC Salisbury, NC Salisbury SAMPLING CONTR. Terrasonic International DRILL METHOD HSA BORING DIAMETER: "8" SAMPLING METHODINTERVAL. Macro Core/5 feet REMARKS: Total well depth: 12 ft bgs. screened 2-12 ft bgs SCECKIPTIVE LOG (page 1 of 1) SAMPLE USGS PROPID COLUMN (FT) DESCRIPTIVE LOG (page 1 of 1) SAMPLE USGS PROPID COLUMN (FT) DESCRIPTION OF MATERIAL SAMPLE USGS PROPID COLUMN (FT) SAMPLE USGS	PROJECT	NAME:	Former Kes	ler Mill			BORING I.D.:	GW-2
PROJECT LOCATION A23 N. Martin Luther King Jr. Ave. Salisbury, NC Salisbury, NC Salisbury SAMPLING CONTR. Terrasonic International DRILL METHOD HSA BORING DIAMETER: "8" SAMPLING METHODINTERVAL. Macro Core/5 feet REMARKS: Total well depth: 12 ft bgs. screened 2-12 ft bgs SCECKIPTIVE LOG (page 1 of 1) SAMPLE USGS PROPID COLUMN (FT) DESCRIPTIVE LOG (page 1 of 1) SAMPLE USGS PROPID COLUMN (FT) DESCRIPTION OF MATERIAL SAMPLE USGS PROPID COLUMN (FT) SAMPLE USGS	PROJECT	NO.:	PB0010900	A			DATE(S) DRILLED:	11/4/2015
Salisbury, NC DRILL METHOD: HSA DRING DIAMETER: "8" SAMPLING METHOD/INTERVAL: Macro Core/6 feet COGGED BY: BB REMARKS. Total well depth: 12 ft bgs. screened: 2-12 ft bgs DESCRIPTIVE LOG (page 1 of 1) SAMPLE USGS PIDITED GRAPHIC USGS PIDITED SAMPLE USGS PIDITED GRAPHIC USGS PI							· · · · · · · · · · · · · · · · · · ·	
Salisbury, NC DRILL METHOD: HSA DRING DIAMETER: "8" SAMPLING METHOD/INTERVAL: Macro Core/6 feet COGGED BY: BB REMARKS. Total well depth: 12 ft bgs. screened: 2-12 ft bgs DESCRIPTIVE LOG (page 1 of 1) SAMPLE USGS PIDITED GRAPHIC USGS PIDITED SAMPLE USGS PIDITED GRAPHIC USGS PI	DBO IECT	LOCATION	422 N. Mar	tin Luthar I	lina la	1110	DDULING CONTD.	TorraSonic International
BORING DIAMETER: "8" City of Salisbury SAMPLING METHODINTERVAL: Macro Core/6 feet REMARKS: Total well depth: 12 ft bgs. screened: 2-12 ft bgs DESCRIPTIVE LOG (page 1 of 1) SAMPLE USCS PDF9D OCUUMN F(**) DESCRIPTION OF MATERIAL DESCRIPTION OF MATERIAL DESCRIPTION OF MATERIAL DESCRIPTION OF MATERIAL DESCRIPTION OF MATERIAL 1398 1399 1399 1399 1399 1399 1399 1399 1300	-KOJEC I	LOCATION.			(IIIR)! . /	we.		
CLIENT: City of Salisbury SAMPLING METHOD/INTERVAL: Macro Core/6 feet REMARKS: Total well depth: 12 ft bgs; screened: 2-12 ft bgs DESCRIPTIVE LOG (page 1 of 1) SAMPLE URGS PIDETO GRAPHIC (pipe) SAMPLE URGS PIDETO GRAPHIC			Salisbury, N	AC.				
DESCRIPTIVE LOG (page 1 of 1) SAMPLE USCS PDPTD GRAPPIC COLUMN 1.0 686 1 2.0 3.0 Red brown fine sandy CLAY, dry 4.0 5.5 6.0 7.0 8.0 Yellow brown silty CLAY, moist 1.0 Gray silty CLAY, moist 1.1 Gray silty CLAY, moist 1.2 Gray silty CLAY, moist 1.3 Boring terminated at 12 feet bgs 1.4 Well completed with 5-foot long, aboveground, steel well cover 1.5 Gray silty CLAY, moist 1.5							BORING DIAMETER:	~8"
DESCRIPTIVE LOG (page 1 of 1) SAMPLE USCS PDPTD GRAPPIC COLUMN 1.0 686 1 2.0 3.0 Red brown fine sandy CLAY, dry 4.0 5.5 6.0 7.0 8.0 Yellow brown silty CLAY, moist 1.0 Gray silty CLAY, moist 1.1 Gray silty CLAY, moist 1.2 Gray silty CLAY, moist 1.3 Boring terminated at 12 feet bgs 1.4 Well completed with 5-foot long, aboveground, steel well cover 1.5 Gray silty CLAY, moist 1.5								
DESCRIPTIVE LOG (page 1 of 1) SAMPLE USCS PDPTD GRAPPIC COLUMN 1.0 686 1 2.0 3.0 Red brown fine sandy CLAY, dry 4.0 5.5 6.0 7.0 8.0 Yellow brown silty CLAY, moist 1.0 Gray silty CLAY, moist 1.1 Gray silty CLAY, moist 1.2 Gray silty CLAY, moist 1.3 Boring terminated at 12 feet bgs 1.4 Well completed with 5-foot long, aboveground, steel well cover 1.5 Gray silty CLAY, moist 1.5	CLIENT:		City of Salis	bury			SAMPLING METHOD/I	NTERVAL: Macro Core/5 feet
DESCRIPTIVE LOG (page 1 of 1) SAMPLE USCS PIDPID GRAPHIC (page) INTERVAL USCS PIDPID COLUMN (F) 686 20 30 Red brown fine sandy CLAY, dry 40 50 70 80 Yellow brown silty CLAY, most 13399 13399 13399 1330 130 120 130 130 130 130 13			·					
DESCRIPTIVE LOG (page 1 of 1) SAMPLE USCS PIDPID COLUMN 10 10 10 10 10 10 10 1	LOGGED	BY:	BB				REMARKS: Total well of	depth: 12 ft bgs; screened: 2-12 ft bgs
SAMPLE USCS PEPTID (ptp) COLUMN C					<u></u>		<u> </u>	
SAMPLE USCS PEPTID (ptp) COLUMN C	DESCRIP	TIVE LOG (pa	ge 1 of 1)				······································	
NITERVAL USCS (994) COLUMN T		<u>Loo (pa</u>						
See		uscs						DESCRIPTION OF MATERIAL
September Sept	INTERVAL							DESCRIPTION OF WATERIAL
3.0 Red brown fine sandy CLAY, dry So So So So So So So S								
1389 1389			686	l i	1			
S S S S S S S S S S				l			Red brown fine sandy C	CLAY, dry
6.49			556	<u> </u>				
1399					1			
R.			649					
1399 100 110 120								
1399 100 110 120 130			264				Yellow brown silty CLA	Y, moist
11.0 Gray stilly CLAY, moist 13.0 Boring terminated at 12 feet bgs 14.0 Well completed with 5-foot long, aboveground, steel well cover 15.0 16.0 17.0 18.0 19.0 22.0					1			
12.0 Gray silty CLAY, most			1399					
13.0 Boring terminated at 12 feet bgs 14.0 Well completed with 5-foot long, aboveground, steel well cover 15.0 16.0 17.0 18.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0					•		Grav silty CLAY moist	
14.0 Well completed with 5-foot long, aboveground, steel well cover 15.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 South of the state of th								
15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 39.0 40.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 3								
16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 35.0 36.0 37.0 38.0 39.0 40.0 Control Market Auditor Business							Well completed with 5-f	oot long, aboveground, steel well cover
17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 38.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39								
18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 33.0								
19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 33.0 34.0 33.0 34.0 33.0 34.0 33.0 34.0 35.0 36.0 37.0 38.0 37.0 38.0 38.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39				•				
20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 35.0 36.0 37.0 38.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39								
22.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 38.0 37.0 38.0 38.0 39.0 40.0 Comparison substitutions and the substitution of the substituti								
22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 33.0 33.0 33.0 34.0 35.0 36.0 37.0 38.0 38.0 38.0 39.0 40.00 Complete Control Audier Complete Control Co								
23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 33.0 33.0 33.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 Septim to water and the first an								
24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 35.0 36.0 37.0 38.0 39.0 40.0 CERPCINO Shaping the Future CROUT SHOOM SHITTSHOOM CONTROLLED SHOULD SHAPACE SHOULD SHAPACE SHAP								·
25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0						23.0		
26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 35.0 36.0 37.0 38.0 39.0 40.0 Septim brook stant auges continuous stant auges contin								
27.0 28.0 29.0 30.0 31.0 32.0 33.0								
28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 Septic Solubia GROUT GROUT SHAPIT ROTARY SHAPIT ROTARY SHAPIT ROTARY SHAPIT ROTARY SHAPIT ROTARY SHAPIT ROTARY SHAPIT ROTARY SHAPIT ROTARY SHAPIT SHOON SHAPIT SHA								
29.0 30.0 31.0 32.0 33.0 33.0 34.0 35.0 36.0 37.0 38.0 38.0 39.0 40.0 Same of the control of								
RELLING METHODS SS-SPLIT SPOON RELLING METHODS SS-SPLIT SPOON								
33.0 32.0 33.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 SSASPLT SPOON AIR - AIR ROTARY EM - MALD ROTARY EM - MALD ROTARY EM - MALD ROTARY EM - MALD ROTARY EM - MALD ROTARY EM - MALD ROTARY SAMPLIAN METHODS SPLIT SPOON 10988 Richardson Road Ashland, Virginia 23005								
32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 Deplicate Methods SS-SMT STORM AIR - AR ROTARY CHARGOURD SUMFACE GRAPHIC COLUMN AIR - AR ROTARY CHARGOURD STEM AUGER CHARGOURD CHARGOURD CHARGOURD CHARGOURD SAMPLIA METHODS GRAPHIC COLUMN STEM AUGUS CHARGOURD SAMPLIA METHODS GRAPHIC COLUMN STEM AUGUS CHARGOURD SAMPLIA METHODS GRAPHIC COLUMN STEM AUGUS SAMPLIA METHODS GRAPHIC COLUMN STEM AUGUS SAMPLIA METHODS GRAPHIC COLUMN STEM AUGUS SAMPLIA METHODS GRAPHIC COLUMN STEM AUGUS SAMPLIA METHODS GRAPHIC COLUMN SAMPLIA METHODS GRAPHIC COLUMN SAMPLIA METHODS SAMPLIA METHODS SAMPLIA METHODS GRAPHIC COLUMN SAMPLIA METHODS SAMPLI						30.0		
33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 SAND ASSENCE ORIGINAL SECTIONS SAND ASSENCE ORIGINAL						31.0		
34.0 35.0 36.0 37.0 38.0 39.0 40.0 SAND AIR ROTARY CFA - CONTINUOUS FLIGHT AUGER RO ROCK CORNING WRITE-MARKET COLOR ROCK - ROCK CORNING WRITE-MARKET COLOR ROCK - ROCK CORNING WRITE-MARKET COLOR ROCK - ROCK CORNING ROCK - R						32.0		
ASAPULA METHODS SAS-PULL NO STEM AUGER WORK METHODS SAS-PULL SHOON SAS PULL SPOON SPLIT SPOON 35.0 36.0 37.0 38.0 39.0 40.0 TO STEM CALCENTINOUS FLIGHT AUGER GRAPHIC COLUMN GROUT GROUT GROUT BENTONTE SAND SAPPLINA METHODS GP-GEOPPROBE SPLIT SPOON SCREEN 35.0 36.0 37.0 38.0 39.0 40.0 TO STEM CALCENTINOUS SAS PULL SPOON SAND SCREEN TO STEM CALCENTINOUS SAND SAND SCREEN TO STEM CALCENTINOUS SAND SCREEN TO STEM CALCENTINOUS SAND SCREEN TO STEM CALCENTINOUS SAND SAND SCREEN TO STEM CALCENTINOUS SAND SAND SAND SAND SAND SAND SAND SAN						33.0		
ASAPLINA METHODS SAS-PLIT SPOON DEPTH TO WATER MAY WARD ALOPE OF SPOON SPLIT SPOON 36.0 37.0 38.0 39.0 40.0 TO SPOON SAND SELOW GROUND SURFACE GRAPHC COLUMN GROUT GROUT GROUT BENTONTE SAND SPLIT SPOON 10988 Richardson Road Ashland, Virginia 23005						34.0		
ASPLIANS METHODS SAS-PLIT SPOON DEPLIANS METHODS SAS-PLIT SPOON DEPTH TO WATER GROUT GROUT GROUT GROUT GROUT BENTONTE BENTONTE SAND SCREEN 37.0 38.0 39.0 40.0 40.0 DEPTH TO WATER GROUT GROUT SAND SAND SCREEN DEPTH TO WATER GROUT GROUT SAND SAND SCREEN 37.0 38.0 39.0 40.0 TO WATER GROUT GROUT SAND SAND SAND SAND SCREEN 10988 Richardson Road Ashland, Virginia 23005						35.0		
ASAPUL SPON SPLIT SPON SPLIT SPON SPLIT SPON SPLIT SPON SPLIT SPON SCREEN 38.0 39.0 40.0 40.0 AU.0 CORPTION SPAN AU.0 AU.0 CORPTION SPAN AU.0 SAND SAND SAND SAND SAND SAND SAND SAND SAND SCREEN AU.0 AU.0 AU.0 CORPTION SAND CORPTION SAND SAND AU.0 AU.0 CORPTION SAND CORPTION Shaping the Future 10988 Richardson Road Ashland, Virginia 23005						36.0		
ASPLIANS METHODS SAS-PLIA SPOON DEPTH TO WATER GRACH CONTINUOUS FLIGHT AUGER BENTONTE MAY - HAND ALGER MAY						37.0		
DEPLIANCE METHODS SAS-PIN SPOON GRAPHIC COLUMN CFA - CONTINUOUS FLIGHT AUGER DC - CRYEN CASING HA - HAND AUGER HA - HA - HA - HA - HA - HA - HA - HA -	***************************************					38.0		ļ
DRILLING METHODS SS.SPLIT SPOON Depth Column GRAPHC COLUMN GRAPHC COLUMN GRAPHC COLUMN DEPTH TO WATER HAR - HAD LOW STEM ALGER MOR - MICD FRILLING RC RICK CORNING GRAPHC STEM ALGER GRAPHC COLUMN GROUT GROUT GROUT SENTONTE SAND GRAPHC STEM ALGER GRAPHC STEM ALGER GRAPHC COLUMN GROUT GROUT SENTONTE SENTONTE SAND 10988 Richardson Road Ashland, Virginia 23005						39.0		
SS-SPLIT SPOON GRAPHIC COLUMN GRAPHIC COLUMN TO CONTINUOUS FLIGHT AUGER HAS - HOLLOW STEM ALGER HA						40.0		
AIR-AIR FORTARY OCH - CONTINUOUS FLIGHT AUGER OCH - CONTINUOUS FLI	DRILLING METHO	DS		RFACE	7			
DE-ORVEN CASING HA-HAND ALGER HAS - HALLOW STEM ALGER HALLOW STEM ALGER HAS - HALLOW STEM ALGER HAS - HALLOW STEM ALGER HAS - HALLOW STEM ALGER HAS - HALLOW STEM ALGER HAS - HALLOW STEM ALGER HAS - HALLOW STEM ALGER HAS - HALLOW STEM ALGER HAS - HALLOW STEM ALGER HAS - HALLOW STEM ALGER HALLOW STEM ALGER HALLOW STEM ALGER HALLOW STEM ALGER HALLOW STEM ALGER HALLOW STEM ALGER HALLOW STEM ALGER HALLOW STEM ALGER HALLOW STEM ALGER HALLOW	AIR - AIR ROTARY CFA - CONTINUOL	IS FLIGHT AUGER	_	DEDTH TO PAYER	1			<u>_</u>
Shaping the Future Shaping the Future Shaping the Future Shaping the Future Shaping the Future Shaping the Future Ashland, Virginia 23005	DC - DRIVEN CAS	NG.	HARMAN AND AND AND AND AND AND AND AND AND A		I			Cardno
Shaping the Future Shaping the Future Shaping the Future SAND SAND SAND SAND SAND SAND SAND SAN	MD - MUD DRILLIN	iG i	many being comment to the combine minutes. Accommend to the property		1	,		-
10988 Richardson Road Ashland, Virginia 23005	WR - WATER ROT	ARY			1			Shaping the Future
10988 Richardson Road Ashland, Virginia 23005				SAND	1			
GUREEN	2011				ì			
GUREEN				SCREEN	1		Ashlan	d, Virginia 23005
Samples collection interval PHC = Petroleum Indocarbon odor SAA - Same as a				- CONTENT	•			•
	Samples collection	interval PHC = P	etreleum hrdecarben oder	SAA - Same a	1			

I

PROJECT NO. PB0010900A DATE(S) DRILLED: 11/3/2015 PROJECT LOCATION: 423 N. Martin Luther King Jr. Ave. Salisbury, NC DRILLING CONTR: TerraSonic International DRILL METHOD: HSA BORING DIAMETER: "8" CLIENT: City of Salisbury SAMPLING METHODINTERVAL: Macro Core/5 feet DESCRIPTIVE LOG (page 1 of 1) SAMPLING METHODINTERVAL: Macro Core/5 feet DESCRIPTIVE LOG (page 1 of 1) DESCRIPTION OF MATERIAL A476								BORING LOG	01110		
PROJECT LOCATION: 423 N. Martin Luther King Jr. Ave. Salisbury, NC Salisbury, NC Salisbury SAMPLING METHOD: HSA BORING DIAMETER: "8" CLIENT: City of Salisbury SAMPLING METHOD/INTERVAL: Macro Core/5 feet COGED BY: BB REMARKS: Total well depth: 20 ft bgs; screened: 5-20 ft bgs DESCRIPTIVE LOG (page 1 of 1) SAMPL SAMPL USCS PIDITID GRAPHIC (psp) GOLIMN GOLIMN GOLIMN TOTA SAMPL SAMPL USCS PIDITID GRAPHIC (psp) GOLIMN GOLIMN GOLIMN TOTA SAMPL SAMPL SAMPL SAMPL SAMPL SA				Former Kesler Mill							
Salisbury, NC	(OJECT NO	0.:	PB0010900A	'				DATE(S) DRILLED:	11/3/2015		
Salisbury, NC	0.1505.	20171211	422 N. 14		121	- T. A			TCi-l-iiI		
BORING DIAMETER: ~8"	ROJECT LO	OCATION:			ner Kin	g Jr. A	ve.				
CLIENT: City of Salisbury SAMPLING METHOD/INTERVAL: Macro Core/5 feet			Salisbury, N	IC							
DESCRIPTIVE LOG (page 1 of 1) SAMPLE USCS PIDPTID COLUMN (PT) A76 509 549 577 479 11.0 574 776 776 776 776 777 778 778 7			·					BORING DIAMETER:	~8"		
SAMPLE USCS	JENT:		City of Salis	bury				SAMPLING METHOD/IN	NTERVAL: Macro Core/5 feet		
SAMPLE USCS		_	DD.					DEMARKS. Takel			
SAMPLE USCS PIDIFID GRAPHIC COLUMN (FT) DESCRIPTION OF MATERIAL	GGED BY	<u> </u>	ВВ		·			REMARKS. Total well de	eptil. 20 it bgs, screened. 5-20 it bgs		
SAMPLE USCS PIDIFID GRAPHIC COLUMN (FT) DESCRIPTION OF MATERIAL	COUDTIV	/ELOG/m	200 1 of 1)								
NTERVAL USCS (ppb) COLUMN (FT) DESCRIPTION OF MATERIAL 1.0 2.0 3.0 6.05 4.0 5.0 5.0 6.0 5.0 6.0 7.0 6.0 7.0 6.0 7		re eog (pe			CD A DUIG		DEDTH				
1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3		uscs	1						DESCRIPTION OF MATERIAL		
3.0 Gravel and debris then dark red silty CLAY, dry 4.0 5.0 6.0 7.0 8.0 Brownish yellow silty CLAY, dry 9.0 10.0 11.0 12.0 13.0 Brownish yellow silty CLAY, black mottling, moist 14.0 15.0 15.0 16.0 Yellow SILT, black mottling, moist/wet 17.0 18.0 19.0 20.0 21.0 Boring terminated at 20 feet bgs 22.0 Well completed with 5-foot long, aboveground, steel well cover 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 33.0 33.0 33.0 33.0 33.0 33	-		(27.7)								
3.0 Gravel and debris then dark red silty CLAY, dry 4.0 5.0 6.0 7.0 8.0 Brownish yellow silty CLAY, dry 9.0 11.0 11.0 12.0 13.0 Brownish yellow silty CLAY, black mottling, moist 14.0 15.0 16.0 Yellow SILT, black mottling, moist/wet 17.0 18.0 19.0 600 21.0 Boring terminated at 20 feet bgs 22.0 Well completed with 5-foot long, aboveground, steel well cover 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 33.0 33.0 33.0 33.0 33.0 33			476								
5.0					L.		3.0	Gravel and debris then	dark red silty CLAY, dry		
549 577 577 479 10.0 10.0 11.0 12.0 13.0 15.0 756 16.0 Yellow Silty CLAY, black mottling, moist 740 18.0 19.0 20.0 20.0 21.0 Boring terminated at 20 feet bgs 22.0 Well completed with 5-foot long, aboveground, steel well cover 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0			605				4.0				
▼					ŀ						
▼ 8.0 Brownish yellow silty CLAY, dry 9.0 10.0 11.0 12.0 12.0 13.0 Brownish yellow silty CLAY, black mottling, moist 14.0 15.0 16.0 Yellow Sil.T, black mottling, moist/wet 17.0 18.0 19.0 20.0 21.0 Boring terminated at 20 feet bgs 22.0 Well completed with 5-foot long, aboveground, steel well cover 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0			549]	[6.0				
9.0 10.0 11.0 11.0 12.0 13.0 Brownish yellow silty CLAY, black mottling, moist 14.0 15.0 16.0 Yellow SILT, black mottling, moist/wet 17.0 18.0 19.0 600 20.0 21.0 Boring terminated at 20 feet bgs 22.0 Well completed with 5-foot long, aboveground, steel well cover 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0					_						
10.0 11.0 12.0 13.0 13.0 15.0 15.0 15.0 15.0 15.0 16.0 17.0 17.0 18.0 19.0			5//			ļ		Brownish yellow silty CL	.AY, dry		
11.0 12.0 13.0 14.0 15.0 15.0 15.0 16.0 756 17.0 18.0 19.0 1			470			-					
12.0 13.0 Brownish yellow silty CLAY, black mottling, moist 14.0 15.0 16.0 Yellow SILT, black mottling, moist/wet 17.0 18.0 19.0 20.0 21.0 Boring terminated at 20 feet bgs 22.0 Well completed with 5-foot long, aboveground, steel well cover 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 39.0 39.0			7/3			ŀ					
13.0 Brownish yellow silty CLAY, black mottling, moist 14.0 15.0 16.0 Yellow SILT, black mottling, moist/wet 17.0 18.0 19.0 20.0 20.0 21.0 Boring terminated at 20 feet bgs 22.0 Well completed with 5-foot long, aboveground, steel well cover 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.			574		1	ł					
14.0 15.0 16.0 Yellow SILT, black mottling, moist/wet 17.0 18.0 19.0 1				}		ł			AY, black mottling, moist		
16.0 Yellow SILT, black mottling, moist/wet 17.0 18.0 19.0 19			726				•				
17.0 18.0 19.0 20.0 20.0 21.0 Boring terminated at 20 feet bgs 22.0 Well completed with 5-foot long, aboveground, steel well cover 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 39.0					Ī	15.0	•				
740 18.0 19.0 20.0 20.0 20.0 20.0 20.0 21.0 Boring terminated at 20 feet bgs 22.0 Well completed with 5-foot long, aboveground, steel well cover 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 30.0 39.0 39.0 39.0 30.0 39.0 39.0 39.0 30.0 39.0 39.0 30.0 39.0 39.0 39.0 30.0 39.0 39.0 39.0 30.0 39.0 39.0 30.0 39.0 39.0 39.0 30.0 39.0 30.0 39.0 39.0 30.0 39.0 30.0 39.0 39.0 30.0 39.0 39.0 39.0 30.0 39.0 39.0 30.0 39.0 39.0 39.0 39.0 30.0 39.0 39.0 30.0 39.0 39.0 30.0 39.0 39.0 30.0 39.0 30.0 39.0 39.0 30.0 39.0 39.0 30.0 39.0 39.0 30.0 39.0 30.0 39.0 39.0 30.0 39.0 39.0 30.0 39.0 30.0 39.0 3			756		[ling, moist/wet			
19.0 20.0						,					
Solution Solution			740			ļ					
21.0 Boring terminated at 20 feet bgs 22.0 Well completed with 5-foot long, aboveground, steel well cover 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0			600	1	1 1	- 1					
22.0 Well completed with 5-foot long, aboveground, steel well cover 23.0 24.0 25.0 25.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0			000		LL				feet bas		
23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0			+	1							
25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0			1	1							
26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0				1			24.0				
27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0				1		ľ	25.0				
28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0]		1					
29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0				1							
30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0			 	1							
31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0				1				4			
32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0			-{	-				1			
33.0 34.0 35.0 36.0 37.0 38.0 39.0			+	1				<u>.</u> }			
34.0 35.0 36.0 37.0 38.0 39.0			1	1				<u>.</u> i			
36.0 37.0 38.0 39.0				1				. }			
37.0 38.0 39.0				1			35.0	1			
38.0 39.0]							
39.0				1				3			
				4							
(1							
DRILLING METHODS bys- BELOW GROUND SURFACE	RILLING HETUGES		bose BELOW COOLING A	URFACE			40.0	<u>'l</u>			
SS-SPLIT SPOON AIR_AIR PORTABY GRAPHSC COLUMN				O'LLUCE	ì						
CFA - CONTINUOUS FLIGHT AUGER	FA - CONTINUOUS F C - DRIVEN CASING	FLIGHT AUGER 3			VATER						
HSA-HOLLOW STEM AUGER MO-MUD PRILLING GROUT GROUT GROUT GROUT GROUT GROUT	ISA - HOLLOW STEM ND - MUD DRILLING	M AUGER				1) Carano		
RC - ROCK CORING WE - MATCH POTATAL Chaning the Fatters	C - ROCK CORING	ıv.		_	TE.	l			Shaping the Future		
GP-GEOPROBE SAND SPUT SPOON	GP-GEOPROBE SPLIT SPOON			SAND					• •		
10988 Richardson Road	J -										
SCREEN Ashland, Virginia 23005				SCRFFN				Ashlar	nd, Virginia 23005		
						·					
Samples collection interval PHC = Petroleum Indocation oder SAA - Same es e	amples collection inte	erval PHC	= Petroleum hrdocarbon odor	S	AA - Same as a	<u> </u>					

						SOIL	BORING LOG						
PROJECT	NAME:	Former Kes						GW-4					
PROJECT	NO.:	PB0010900	A				DATE(S) DRILLED:	11/3/2015					
PROJECT	LOCATION:	423 N. Mar	tin Lut	her Ki	ng Ir A	Ave	DRILLING CONTR.:	TerraSonic International					
		Salisbury, I						HSA					
		Jansbury, I	VC.					~8"					
							BORING DIAMETER:	· 8					
CLIENT:		City of Salis	sbury				SAMPLING METHOD/INTERVAL: Macro Core/5 feet						
100055	DV.	DD					DEMARKS Total well do	epth: 24 ft bgs; screened: 9-24 ft bgs					
LOGGED	DT.	BB					TOTAL TOTAL WELL GE	pur. 27 it bys, solecticu. 3-24 it bys					
DECORIO	TIVELOGI	4 -/ 4											
	TIVE LOG (pa												
SAMPLE	uscs	PID/FID	٠	GRAPHIC	;	DEPTH							
INTERVAL		(ppb)		COLUMN		(FT)		DESCRIPTION OF MATERIAL					
						1.0							
		0				2.0							
			********				Gravel then brown red sil	ity CLAY, dry					
		0				4.0							
						5.0							
		812	ro, wa.			6.0							
			Section 1			7.0							
		527				8.0	Red brown silty CLAY, dr	ry [
						9.0							
		649				10.0							
						11.0							
		687				12.0							
						13.0							
		663				14.0							
]				Red brown silty CLAY, moist						
		0				16.0	tod brown only OD (1) mojot						
) 1			17.0							
		297				18.0	,						
						19.0							
		293				20.0							
							Light brown and yellow si	ilty CLAY, moist					
		L				22.0							
						23.0							
						24.0	5						
		<u></u>					Boring terminated at 24 f						
		 					vveil completed with 5-fo	ot long, aboveground, steel well cover					
		ļ				27.0		·					
	ļ	Ļ———				28.0							
		ļ				29.0							
		<u> </u>				30.0							
						31.0							
						32.0		į					
						33.0							
		ļ				34.0							
						35.0		•					
		L			ŀ	36.0		j					
						37.0							
		ļ. <u>.</u>				38.0		j					
						39.0 40.0							
DC - DRIVEN CAS HA - HAND AUGE! HSA - HOLLOW S' MD - MUD DRILLIN RC - ROCK CORIN WR - WATER ROT	(US FLIGHT AUGER INNG R TEM AUGER NG NG INNY	bgs= BELOW GROUND SL GRAPHIC COLUMN	DEPTH TO WA GROUT BENTONITE	ĺ			5	Cardno Shaping the Future					
SAMPLING MET GP-GEOPROBE	HODS		SAND										
SPLIT SPOON							10022 D	ichardson Road					
								l, Virginia 23005					
			SCREEN		Ī .		Asmano	1, VII GIIII a 20000					
Samples collection	Interval PHC =	Petroleum hrdocerbon odor	SAA	- Same as al									

	SOIL BORING LOG										
PROJECT		Former Kesle			BORING I.D.:	GW-5					
PROJECT	NO.:	PB0010900A			DATE(S) DRILLED:	11/4/2015					
PROJECT	LOCATION:		in Luther King Jr	. Ave.	DRILLING CONTR.:	TerraSonic International					
		Salisbury, N	С		DRILL METHOD:	HSA					
					BORING DIAMETER:	~8"					
CLIENT:		City of Salis	bury		SAMPLING METHOD/INTERVAL: Macro Core/5 feet						
LOGGED	BY:	ВВ			REMARKS: Total well depth: 11 ft bgs; screened: 1-11 ft bgs						
DESCRIP	TIVE LOC #	mo 4 cf 4\									
	TIVE LOG (pa	,	0045110	l DEST							
SAMPLE INTERVAL	USCS	PID/FID (ppb)	GRAPHIC COLUMN	DEPTH (FT)		DESCRIPTION OF MATERIAL					
WILLIAME			COLUMN			SECOND HONO, MENERAL					
		1327		2.0							
				3.0	Red brown sandy, silty	CLAY, maist					
		642		4.0	1	1					
		 		5.0							
	 	193	1 1	6.0 7.0							
	<u> </u>	480		8.0							
 	 	 			Gray brown silty CLAY	moist/wet					
 		1167		10.0		, ···-·					
	i – – –			11.0							
				12.0							
						2 feet bgs and well materials raised one foot					
<u> </u>		 				foot long, aboveground, steel well cover					
 	}	 		15.0							
 	 	 		16.0 17.0							
	 	 		18.0							
	†			19.0							
				20.0	_[
				21.0							
				22.0							
	<u> </u>			23.0							
	<u> </u>	 		24.0							
	 			25.0							
	 			26.0 27.0							
 	 	 		28.0							
 	 	 		29.0							
		 		30.0	···l						
 		1		31.0	1						
				32.0	7						
			i	33.0							
 	ļ <u>.</u>			34.0	_						
	ļ	 		35.0							
I	 			36.0 37.0							
}	 	-		38.0							
 	1	 		39.0							
	 	 		40.0							
DRILLING METH SS-SPLIT SPOO	HODS IN	bgs= BELOW GROUND SL	RFACE		<u> </u>						
CFA - CONTINU	RY OUS FLIGHT AUGER	GRAPHIC COLUMN	DEPTH TO WATER								
DC - DRIVEN CA HA - HAND AUG HSA - HOLLOW	ER STEM AUGER		GROUT			Cardno					
MD - MUD DRILL RC - RGCK COF WR - WATER RO	LING RING		BENTONITE			Shaping the Future					
SAMPLING M GP-GEOPROB	<u>ETHODS</u> E		SAND			oughing are come					
SPLIT SPOON					10022	Richardson Road					
1			ł			nd, Virginia 23005					
K			SCREEN		nailia	,					
Samples collection	on interval PHC	= Petroleum hrdocarbon odor	SAA - Same as a								

•

				SOIL	BORING LOG
PROJECT	ΓNAME:	Former Kes			BORING I.D.: GW-6
PROJEC1	Γ NO.:	PB0010900	A		DATE(S) DRILLED: 11/4/2015
					
DDO IECT	CLOCATION	422 N. Mar	tin Luther Kir	ag Ir Avo	DRILLING CONTR.: TerraSonic International
FROJECI	LOCATION.			ig Ji. Ave.	
		Salisbury, N	NC.	'	DRILL METHOD: HSA
					BORING DIAMETER: ~8"
CLIENT:		City of Salis	shurv		SAMPLING METHOD/INTERVAL: Macro Core/5 feet
		0.0, 0.00			
LOGGED	RY.	ВВ			REMARKS: Total well depth: 13 ft bgs; screened: 3-13 ft bgs
LOUGLD	<u> </u>	00			
DESCRIP	TIVE LOG (4 -5 4			
	TIVE LOG (pa				
SAMPLE	uscs	PID/FID	GRAPHIC	DEPTH	
INTERVAL		(ppb)	COLUMN	(FT)	DESCRIPTION OF MATERIAL
				1.0	
		2905	MACCALLESS 2	2.0	1
			i i	3.0	Dark brown silty CLAY, damp
		2264	▼	4.0	
				5.0	4
		0		6.0	+
				7.0	3
		95			Brown silty CLAY, moist
				9.0	
		0		10.0	
				11.0	
					Gray brown silty CLAY, moist
				13.0	
			<u> </u>		
				15.0	Boring terminated at 13 feet bgs
					Well completed with 5-foot long, aboveground, steel well cover
				16.0	
				17.0	
				18.0	4
				19.0	
				20.0]
				21.0	!
				22.0	·
				23.0	
				24.0	1
				25.0	
				26.0	
	, was 11			27.0]
				28.0	· .
				29.0	
				30.0	·
				31.0	
				32.0	
				33.0	·
				34.0	
				35.0	
				36.0	(
		ļ			
				37.0	
				38.0	Į
				39.0	
				40.0	
DRILLING METHOL SS-SPLIT SPOON	DS .	bgs= BELOW GROUND SU	RFACE		
AIR - AIR ROTARY CFA - CONTINUOU DC - DRIVEN CASI		GRAPHIC COLUMN	DEPTH TO WATER		
DC - DRIVEN CASI HA - HAND AUGER HSA - HOLLOW ST	₹		GROUT		C Cardno
MD - MUD DRILLIN RC - ROCK CORIN	iG IG	in development in	BENTONITE		Oles front Ed. 5
WR - WATER ROTA SAMPLING MET GP-GEOPROBE	ARY		SAND		Shaping the Future
GP-GEOPROBE SPLIT SPOON			UNITE		
					10988 Richardson Road
			SCREEN		Ashland, Virginia 23005
		• * *	SAREEN		·
Samples collection (interval PHC = i	etroleum hrdocarbon odor	SAA - Same as a		

	SOIL BORING LOG											
PROJECT	NAME:	Former Kesle	er Mill		BORING I.D.:	GW-7						
PROJECT		PB0010900A			DATE(S) DRILLED:	11/4/2015						
						· · · · · · · · · · · · · · · · · · ·						
PROJECT	LOCATION	423 N. Mart	in Luther King J	r. Ave	DRILLING CONTR.:	TerraSonic International						
[Salisbury, N			DRILL METHOD:	HSA						
l		Jansbury, N	-		BORING DIAMETER:	~8"						
					DOTATIO DICTORE LEIV.	_						
CLIENT:		City of Salis	burv		SAMPLING METHOD/	NTERVAL: Macro Core/5 feet						
		2.17 2. 2413	~17		E	The state of the s						
LOGGED	BY:	ВВ			REMARKS: Total well o	depth: 18 ft bgs; screened: 3-18 ft bgs						
DESCRIP	TIVE LOG (pa	ige 1 of 1)										
SAMPLE	uscs	PID/FID	GRAPHIC	DEPTH								
INTERVAL	0303	(ppb)	COLUMN	(FT)		DESCRIPTION OF MATERIAL						
				1.0	1							
		2290		2.0		CLAY majet						
		3224	<u> </u>	4.0	Red brown sandy, silty	CLAT, MOISE						
 		V=2-7		5.0								
		3100	} }	6.0								
				7.0								
		1951			Gray brown silty CLAY,	moist						
 		2643		9.0								
ļ		2043		10.0								
 		3282		12.0								
		 		13.0								
		2997		14.0	A I A utilia vican mailaYL	wet						
 		<u> </u>		15.0		, 1100						
 	<u> </u>	<u> </u>		16.0	3							
 	 	 		17.0								
 	 	 			Boring terminated at 18	B feet bas						
						ush to grade, steel well cover						
				21.0	1							
 				22.0								
		 		23.0 24.0								
 		 		25.0								
		1		26.0								
				27.0								
				28.0								
ļ				29.0								
 	 			30.0	_							
 	 	 		32.0								
 	 			33.0								
				34.0	_1							
				35.0	_ }							
			}	36.0	1							
 	ļ	 	ł	37.0								
1	 		1	38.0	□							
 	 	 	ł	40.0								
DRILLING METH SS-SPLIT SPOO	ioos N	bgs= BELOW GROUND SU	RFACE		<u></u>							
AIR - AIR ROTAR	RY DUS FLIGHT AUGER	GRAPHIC COLUMN	DEPTH TO WATER									
DC - DRIVEN CA HA - HAND AUG HSA - HOLLOW MD - MUD DRILL	FR		GROUT) Cardno						
MD - MUD DRILL RC - ROCK COR WR - WATER RC	UNG	- Lander Committee	BENTONITE			Shaping the Future						
GP-GEOPROBE	ETHODS E		SAND			anahing ma i awa						
SPLIT SPOON			Ţ		10988	Richardson Road						
						nd, Virginia 23005						
1			SCREEN .			, J						
Samples collection	on interval PHC	= Petroleum hydocerbon odor	SAA - Same as a									

					BORING LOG	
PROJECT	NAME:	Former Kesl	er Mill			W-8
PROJECT	NO.:	PB0010900	A		DATE(S) DRILLED: 11	1/4/2015
PROJECT	LOCATION:	423 N. Mar	tin Luther Kin	g Jr. Ave.	DRILLING CONTR.:. Te	erraSonic International
		Salisbury, N	٧C		DRILL METHOD: H	SA .
					BORING DIAMETER: ~8	3"
CLIENT:		City of Salis	bury		SAMPLING METHOD/INTE	ERVAL: Macro Core/5 feet
LOGGED	BY:	ВВ			REMARKS: Total well dept	h: 20 ft bgs; screened: 5-20 ft bgs
DESCRIPT	TIVE LOG (pa	ge 1 of 1)				
SAMPLE		PID/FID	GRAPHIC	DEPTH		
INTERVAL	uscs	(ppb)	COLUMN	(FT)	DE	SCRIPTION OF MATERIAL
			iskiskiskiis (i	1.0		
		188		2.0		
					Brown red silty CLAY, dry	
		0		4.0		
<u> </u>		0	[5.0 6.0		
		U		7.0		,
	<u></u>	0			Light red silty CLAY, dry	
i				9.0	g/ii./ou o.i.y o y	
		0		10.0		
			▼	11.0		
				12.0		
				13.0	Light red silty CLAY, moist	
				15.0		
				16.0		
				17.0		
					Light red silty CLAY, wet	
	· · · · · · · · · · · · · · · · · · ·			19.0	,,,,	
				20.0		
					Boring terminated at 20 fee	
					Well completed with 5-foot	long, aboveground, steel well cover
				23.0		•
		<u> </u>		24.0 25.0		
				26.0		
			,	27.0		
				28.0		
				29.0		
				30.0		
				31.0		
				32.0		
				33.0		
				34.0		
	·			35.0		3
				36.0 37.0		
				38.0		
				39.0		
				40.0		
DRILLING METHOD	28	bgs= BELOW GROUND SU	RFACE			
AIR - AIR ROTARY CFA - CONTINUOUS DC - DRIVEN CASH	S FLIGHT AUGER	GRAPHIC COLUMN	DEPTH TO WATER			
HA - HAND AUGER HSA - HOLLOW STI	EM AUGER		GROUT			Cardno
MD - MUD DRILLING RC - ROCK CORING	G G		BENTONITE			Shaping the Future
SAMPLING METH	HODS		SAND			
SPLIT SPOON			1		10988 Ric	hardson Road
			1			Virginia 23005
			SCREEN	•		-
Samples collection in	nterval PHC = I	Petroleum fedocarbon odor	SAA - Same as a			

						SOIL	BORING LOG					
PROJECT I	NAME:	Former Kesle	er Mill				BORING I.D.: GW-9					
PROJECT I	NO.:	PB0010900A					DATE(S) DRILLED: 11/3/2015					
PRO JECT I	OCATION	423 N. Mart	in Lut	har Kin	a Ir A	V/O	DRILLING CONTR.: TerraSonic International					
I KOJLOT I	LOOK HON.	Salisbury, N		HEL KIN	g Ji . A	VC.	DRILL METHOD: HSA					
		Jansbury, IV	C			•						
							BORING DIAMETER: ~8"					
OLIENT:		Cim. of Colin	h	J			GANGUINO METUOD (NITED) (AL. Marros Grandes Grandes					
CLIENT:		City of Salis	bury				SAMPLING METHOD/INTERVAL: Macro Core/5 feet					
LOGGED B	V.	ВВ					REMARKS: Total well depth: 24 ft bgs; screened: 9-24 ft bgs					
LOGGLDB	1.	DD					TELINATION TOTAL WORLDOOM, 24 TO 550, 501001104. 5 2 TT 1550					
DESCRIPT	VE LOC (
DESCRIPT												
SAMPLE .	USCS	PID/FID		GRAPHIC		DEPTH	DECODIDATION OF MATERIAL					
INTERVAL		(ppb)		COLUMN	(1880)288072880	(FT)	DESCRIPTION OF MATERIAL					
		0		<u> </u>		1.0 2.0						
		 					Gravel and brick then dark brown silty CLAY, damp					
		0				4.0	States and blick their dank blown daity OLTC, dainp					
		 	7777			5.0						
		0	msnzg@sti	W	entalikili)	6.0						
			on.			7.0						
		0		ſ			Brown silty CLAY, damp					
						9.0						
		0			[10.0						
				_	ĺ	11.0						
		0		<u> </u>		12.0						
		 	•	1	- 1		Light brown/tan CLAY					
		0				14.0 15.0	·					
		0			ŀ	16.0						
		 			ł	17.0						
		1 0 1			ŀ		Dark brown silty CLAY, moist					
				1	İ	19.0						
						20.0						
			i		1	21.0						
				1 1	i	22.0	Light brown silty CLAY, moist					
				1		23.0						
				<u> </u>		24.0	L					
							Boring terminated at 24 feet bgs					
		 				27.0	Well completed with 5-foot long, aboveground, steel well cover					
			l			28.0						
 		 	ļ			29.0						
		†			1	30.0						
			l			31.0	1					
			1		1	32.0						
			Ī		,	33.0						
			}			34.0						
			1			35.0						
			ł			36.0	4					
			1			37.0	4					
 		+	1			38.0	1					
 		 	}			39.0 40.0						
DRILLING METHOD SS-SPLIT SPOON	20	bgs= BELOW GROUND SU	JRFACE			70.0						
AIR - AIR ROTARY		GRAPHIC COLUMN			}							
CFA - CONTINUOU DC - DRIVEN CASH HA - HAND AUGER	NG	Walione Managaran Angara	DEPTH TO V	WATER			Cardno					
HSA - HOLLOW ST	EM AUGER G						<i>J Cardno</i>					
RC - ROCK CORING WR - WATER ROTA SAMPLING MET	ARY HODS		BENTON	ic.	l		Shaping the Future					
SAMPLING METT GP-GEOPROBE SPLIT SPOON			SAND		[• •					
1					l		10988 Richardson Road					
			SCREEN		1		Ashland, Virginia 23005					
i					·		-					
Semples collection i	nterval PHC	Petroleum hydocarbon odor	S/	AA - Same as a	L							

						SOIL	BORING LOG					
PROJEC	T NAME:	Former Kes	ler Mill				BORING I.D.:	GW-10				
PROJEC	T NO.:	PB0010900	A				DATE(S) DRILLED:	11/5/2015				
						******			_			
PROJEC	LOCATION:	423 N. Mar	tin Lut	her Ki	ng Jr. A	ve.	DRILLING CONTR.:	TerraSonic International	_			
ł		Salisbury, I			•		DRILL METHOD:	HSA	_			
1		,,					BORING DIAMETER:	~8"	_			
CLIENT:		City of Sali	sbury		-			NTERVAL: Macro Core/5 feet	_			
		·						_				
LOGGED	BY:	ВВ					REMARKS: Total well o	depth: 30 ft bgs; screened: 5-30 ft bgs	_			
DESCRIP	TIVE LOG (pa	age 1 of 1)	-						_			
SAMPLE		PID/FID		GRAPHI	5 T	DEPTH			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
INTERVAL	uscs	(ppb)		COLUMN	ı	(FT)		DESCRIPTION OF MATERIAL				
	i		ininininin			1.0			_			
		1782				2.0]					
								red silty firm CLAY, dry				
		1527				4.0	1					
		1428				5.0	L — - — - — - — - — -		_			
		1420	ł	İ	l	6.0 7.0	1					
		1786	ł		l 1		1	ht yellow brown silty CLAY, black mottling, moist				
			1	}	ł	9.0		,				
		1224	1			10.0						
						11.0			_			
		1749]		[12.0						
		1841			-	13.0						
		1041				14.0 15.0	1					
		1204			-	16.0						
					l	17.0						
		1117				18.0						
					[19.0						
		916		l .		20.0	l Liaht vellow brown siltv	CLAY, black mottling, wet				
					1	21.0						
					-	22.0 23.0						
-					l	24.0						
						25.0						
					l t	26.0						
					l 1	27.0						
				ĺ		28.0						
						29.0						
				L	L	30.0			_			
					-		Boring terminated at 30					
			1		-	33.0	vven completed with 5-1	oot long, aboveground, steel well cover				
		 	1		H	34.0						
					H	35.0						
		<u> </u>			ı	36.0						
						37.0						
						38.0						
			İ			39.0						
OPH INCHES	nne -	bgs≃ BELOW GROUND SL	DEACE			40.0			_			
DRILLING METHO SS-SPLIT SPOON AIR - AIR ROTARY	,	GRAPHIC COLUMN	Kraue									
CFA - CONTINUOUS FLIGHT AUGER DC - DRIVEN CASING DEPTH TO WATER) Cardno				
HSA - HOLLOW S MD - MUD DRILLII RC - ROCK CORIN	TEM AUGER NG		GROUT BENTONITI					, varuit				
WR - WATER ROT	TARY			-		Shaping the Future						
GP-GEOPROBE SPLIT SPOON	SAMPLING METHODS GP-GEOPROBE SAND SPLIT SPOON					40000 PL 1						
						10988 Richardson Road						
	SCREEN						Asnian	d, Virginia 23005				
Samples collection	interval PHC =	Petroleum hidecarbon eder	SA	A - Seme as a					_			
									_			

ROJECT NAM ROJECT NO. ROJECT LOC	:	Former Kesk PB0010900A			BORING I.D.: GW-11 DATE(S) DRILLED: 11/5/2015
		PB0010900A	١		DATE(C) DDULED. 11/E/2015
ROJECT LOC	CATION:				DATE(S) DRILLED: 11/5/2015
ROJECT LOC	CATION:				
•				g Jr. Ave.	DRILLING CONTR.: TerraSonic International
		Salisbury, N	С		DRILL METHOD: HSA
					BORING DIAMETER: ~8"
LIENT:		City of Salis	bury		SAMPLING METHOD/INTERVAL: Macro Core/5 feet
OGGED BY:		ВВ			REMARKS: Total well depth: 12 ft bgs; screened: 2-12 ft bgs
JGGED B1.					NEID WITE. Folds from deptit, 12 it egg, delegated, 2 12 it egg.
ESCRIPTIVE	LOG (na	ne 1 of 1)	····		
SAMPLE		PID/FID	GRAPHIC	DEPTH	1
NTERVAL	USCS	(ppb)	COLUMN	(FT)	DESCRIPTION OF MATERIAL
				1.0	
		3583		2.0	
			▼	3.0	IVallowish rad silty CLAY day
		5629		4.0	<u> </u>
				5.0	
		5773		6.0 7.0	-ICroon/grov eith/ tirm CLAV mojet
		6288		8.0	0
		0200		9.0	
		5274		10.0	ਨ
			j j	11.0	Green/gray silty firm CLAY, yellow brown mottling, moist/wet
				12.0	
					0 Boring terminated at 12 feet bgs
					Well completed with 5-foot long, aboveground, steel well cover
				15.0	
		ļ'		16.0 17.0	
				18.	
-				19.	
				20.	
				21.	
				· 22.	
				23.	
		ֈ :		24. 25.	
				25. 26.	
		}		27.	
				28.	
				29.	
				30.	
					0 Boring terminated at 30 feet bgs
					.0 Well completed with 5-foot long, aboveground, steel well cover
		 		33.	
		 		34. 35.	
		 	 	36.	
		 	1	37.	
		1	1	38.	
			j	39.	.0
			<u> </u>	40.	.0]
DRILLING METHODS SS-SPLIT SPOON		bgs= BELOW GROUND SI	RFACE		
AIR - AIR ROTARY CFA - CONTINUOUS FLIG DC - DRIVEN CASING	BHT AUGER	GRAPHIC COLUMN	DEPTH TO WATER		
HA - HAND AUGER HSA - HOLLOW STEM AU					() Cardno
MD - MUD DRILLING RC - ROCK CORING WR - WATER ROTARY			BENTONITE		Shaping the Future
SAMPLING METHODS GP-GEOPROSE			SAND		
SPLIT SPOON			•		10988 Richardson Road
			COBEFM		Ashland, Virginia 23005
i I			SCREEN) ·	
Samples collection interval	l PHC•	Petroleum hrdecarbon odor	SAA - Same as a		

						SOIL	OIL BORING LOG						
PROJECT		Former Kes					BORING I.D.: GW-12						
PROJECT	ΓNO.:	PB0010900	Α				DATE(S) DRILLED: 11/5/2015						
PROJEC1	LOCATION:	423 N. Mar	tin Lut	her Ki	ng Jr.	Ave.	DRILLING CONTR.: TerraSonic International						
l		Salisbury, I			_		DRILL METHOD: HSA						
							BORING DIAMETER: ~8"						
			· · · · · · · · · · · · · · · · · · ·										
CLIENT:		City of Sali	sbury				SAMPLING METHOD/INTERVAL: Macro Core/5 feet						
···			<u>'</u>										
LOGGED	BY:	BB					REMARKS: Total well depth: 29 ft bgs; screened: 14-29 ft bgs						
DESCRIP	TIVE LOG (pa	ge 1 of 1)	-										
SAMPLE		PID/FID		GRAPHI	5	DEPTH	1						
INTERVAL	uscs	(ppb)	l	COLUMN	٧	(FT)	DESCRIPTION OF MATERIAL						
		<u> </u>	71.00 (M) (M)	ł	777777777	1.0)						
		2362				2.0	<u> </u>						
					72.77	3.0	<u> </u>						
		1981				4.0	<u> </u>						
			## ##		<i>####</i>	5.0							
		2166	6.0		·								
			47.44		7/4/4/4	7.0	JCrace than brown rad eith, firm CLAV, do,						
		2003				8.0							
		1950				9.0	ed in the control of						
						10.0							
		1440	8,44,550		7(D-11)	11.0							
		948		į .		12.0	_						
-			l		i	13.0							
	940					14.0 15.0							
		815	1	1	16.0								
		013	ł			17.0							
		0	ł	İ		18.0							
		 	ĺ					19.0	5				
		0	1				20.0	That relian brown situ () AY black mottling moist					
			1			21.0							
			1		}	22.0	5						
			1	l	1	23.0	<u> </u>						
		-	1			24.0							
]			25.0							
			}			26.0	1						
			}	İ			Light yellow brown silty CLAY, black mottling, wet						
			}			28.0							
			<u> </u>	<u> </u>	<u></u>	29.0							
							Boring terminated at 29 feet bgs						
	·		1				Well completed with 5-foot long, aboveground, steel well cover						
		ļ				32.0							
			Į .			33.0 34.0							
 			ł			35.0							
 			ł			36.0	_						
		-	1			37.0							
			j			38.0	Ⅎ						
		 	1			39.0							
		 	1			40.0							
DRILLING METHO SS-SPLIT SPOON	DS	bgs= BELOW GROUND SU	RFACE		Г								
AIR - AIR ROTARY CFA - CONTINUOL	, JS FLIGHT AUGER	GRAPHIC COLUMN	DED*****	MIEC									
DC - DRIVEN CAS HA - HAND AUGER HSA - HOLLOW S	ING	_ 	DEPTH TO W	MIEK			C Cardno						
MD - MUD DRILLIN RC - ROCK CORIN	¥G ¥G	ananan kanan kanan ka	BENTONIT	Ę	l								
WR - WATER ROT SAMPLING MET GP-GEOPROBE	ARY		SAND		Ĭ		Shaping the Future						
SPLIT SPOON					•		40000 Dishardoon Bood						
						10988 Richardson Road							
			SCREEN		. .		Ashland, Virginia 23005						
Samples collection	interval PHC =	Petroleum hrdocarbon odor	SA	A - Same us a	l .		·						
L													

This form can be used for single or multiple well		For Interna	ıl Us	se ONLY:						
1. Well Contractor Information:										
Terry White		14. WAT	ER	ZONES	_	DESCRIPTION				
Well Contractor Name			t.		t.	DESCRIPTION				
3287-B		f	t.	1	t.			···		
NC Well Contractor Certification Number			ER		or n	nulti-cased wells) (
Terra Sonic International		FROM f	t.	то ₁	i.	DIAMETER in.	THICK	h40	MATER	
Company Name			1	<u> </u>	1	UBING (geotherm				pvc
• •		FROM	\supset	то		DIAMETER in,	THICK		MATER	RIAL
2. Well Construction Permit #:	e, Variance, Injection, etc.)		t.		t.					
3. Well Use (check well use):			t.		t.	in.				
Water Supply Well:		17. SCRI FROM		то	D	IAMETER SLO	T SIZE	THICKNE	SS	MATERIAL
□Agricultural	□Municipal/Public	5 ft.	2	0 ft.	2	in. 0.	010	Sch4	0	PVC
□Geothermal (Heating/Cooling Supply)	□Residential Water Supply (single)	ft.	T	ft.		in.				
□ Industrial/Commercial	□Residential Water Supply (shared)	18. GRO FROM	UT	то		MATERIAL	LEMB	LACEMENT	METU	DD & AMOUNT
□Irrigation	•		t.		ft.	concrete	pou		VIE I III	DD & AMOUNT
Non-Water Supply Well:			t.		ft.	bentonite	pou			
☑Monitoring Injection Well:	□Recovery	<u> </u>	it.		ft.	SOLITOLING	Pou			
□ Aquifer Recharge	☐Groundwater Remediation)			(if applicable)				
□ Aquifer Storage and Recovery	□Salinity Barrier	FROM	[то		MATERIAL		EMPLACE		
□ Aquifer Test	□Stormwater Drainage			20	ft.	#2 silica sa	and	pour t	hroug	h augers
□Experimental Technology	□Subsidence Control		it.		ft.				٠.	
□Geothermal (Closed Loop)	□Tracer	FROM	LI	NG LOG (a TO	ttac	h additional sheet DESCRIPTION (c			tyne. o	rain size, etc.)
☐Geothermal (Heating/Cooling Return)	☐Other (explain under #21 Remarks)		ft.		ft.			onsultant'		, , , , , , , , , , , , , , , , , , , ,
4. Date Well(s) Completed: 11/10/1		` <u> </u>	it.		ft.					
-	Well ID#	1	ft.		ft.					
5a. Well Location: Kesler Mill			ft.		ft.					
Facility/Owner Name	Facility ID# (if applicable)	1	ft.		ft.	-				
423 Martin Luther King Jr		1	ft.		ft.					
Physical Address, City, and Zip	AVE	1	ft.		ft.					
Rowan	•	21. REM	AR	KS						
County	Parcel Identification No. (PIN)									
5b. Latitude and Longitude in degrees/r	,							<u> </u>		
(if well field, one lat/long is sufficient)	mutes/seconds of decimal degrees.	22. Certi		- -	Digit	tally signed by Mike Tynan				
35 39.92 _N 80	27.528 _w	IVIIKE	;	ynar	emai Date	il=mat@terrasonicinternational.com :: 2015 11:20 17:42:05 -05'00'	n, c≃US		11/1	9/15
6. Is (are) the well(s): Permanent o	т Птотоположе	-		ertified We					Date	
o. 13 (are) the wen(3). Est et manent	. — тешрогату					y certify that the w · 15A NCAC 02C .0				
7. Is this a repair to an existing well:	□Yes or ☑No					rovided to the well				
If this is a repair, fill out known well construction repair under #21 remarks section or on the back		23. Site (diag	gram or ac	ddit	ional well detail	ls:			
9 Number of multi-series 1						this page to pro				
8. Number of wells constructed: 1 For multiple injection or non-water supply wells.	ONLY with the same construction, you can	construct	ion	details. Y	ou	may also attach a	adition	iai pages ii	necess	sary.
submit one form.	20.22	SUBMIT	ΓT.	AL INSTU	CT	TIONS				
9. Total well depth below land surface: For multiple wells list all depths if different (example)	2U.32 (ft.)			ll Wells: to the foll		abmit this form	within	30 days of	f com	pletion of well
10. Static water level below top of casing flywater level is above casing, use """		Construct		Division of	W	ater Resources, Service Center,				
11. Borehole diameter: 8.5	(in)	24h Ea-	, T.			·			_	
	(in.)	240. <u>F01</u> 24a abov	e, a	also subm	it a	copy of this fo	rm wit	thin 30 day	s of	n to the address completion of w
12. Well construction method: augel (i.e. auger, rotary, cable, direct push, etc.)				to the foll				,		-
FOR WATER SUPPLY WELLS ONLY	Y:	Divi	isio			esources, Under Service Center,				
	•	24c. For	W			Injection Wells	_	,- = -		
13a. Yield (gpm)		Also sub	mi	t one cop	y 0:	f this form with	in 30			
13b. Disinfection type:	Amount:	well con			ne i	county health de	ерапте	ent of the c	ounty	wnere

WELL CONSTRUCTION RECORD This form can be used for single or multiple wells	For Internal I	Use ONLY:	:						
1. Well Contractor Information:									,
Terry White	14. WATE	R ZONES							
Well Contractor Name	FROM ft.	то	ft.	DESCRIPT	ION				
3287-B	ft.	 	ft.	ļ					
NC Well Contractor Certification Number		CASING		nulti-cased v	vella) ()R LIN	ER (if ann	licable)	
Terra Sonic International	FROM	то		DIAMETE	R	THICK	NESS	MATE	RIAL
	0 ft.	CASTNIC (ft.	2 UBING (geo	in.		h40	<u> </u>	pvc
Company Name	FROM	TO		DIAMETEI	₹	THICK		MATE	RIAL
2. Well Construction Permit #: List all applicable well permits (i.e. County, State, Variance, Injection, etc.)	ft.	<u> </u>	ft.		in.				
3. Well Use (check well use):	ft. 17. SCREE	N N	ft.		in.			<u> </u>	
Water Supply Well:	FROM	TO ft.		IAMETER in.		SIZE	THICK		MATERIAL
□ Agricultural □ Municipal/Public	 - 	14	- -	io.	0.	010	Sch	140	PVC
□Geothermal (Heating/Cooling Supply) □Residential Water Supply (single)	ft.	ft.	<u> </u>	111.					
□Industrial/Commercial □Residential Water Supply (shared)	18, GROUT FROM	ТО		MATERIAL		EMP	LACEMEN	Т МЕТН	IOD & AMOUNT
Oldrigation Non-Water Supply Well:	O ft.	0.5	ft.	concrete		poui	•		
✓ Monitoring □ Recovery	0.5 ft.	1	ft.	bentonite		pour	•		
Injection Well:	ft.		ft.	-					
□Aquifer Recharge □Groundwater Remediation			ACK	(if applicab					
□Aquifer Storage and Recovery □Salinity Barrier	fROM 1 ft.	то 12	ft.	#2 silic		nd			METHOD ab augers
□Aquifer Test □Stormwater Drainage	ft.	12	ft.	#2 SIIIC	a sa	nu	poui	tillou	gh augers
□Experimental Technology □Subsidence Control	20. DRILLI	NG LOG		h additional	sheets	if neces	sarv)		
□Geothermal (Closed Loop) □Tracer	FROM	то			ION (co	lor, hard	ness, soil/ro		grain size, etc.)
□Geothermal (Heating/Cooling Return) □Other (explain under #21 Remarks)	ft.		ft.		S	ee Co	nsultan	t's log	J
4. Date Well(s) Completed: 11/10/15 Well ID# GW-2	ft.		ft.				·		
5a. Well Location:	ft.		ft.						
Kesler Mill	ft.		ft.						
Facility/Owner Name Facility ID# (if applicable)	ft.		ft.					<u> </u>	
423 Martin Luther King Jr Ave	ft.		ft.						
Physical Address, City, and Zip	21. REMAR	IKS							
Rowan	an Atbirdia	<u> </u>		<u> </u>					
County Parcel Identification No. (PIN)									
5b. Latitude and Longitude in degrees/minutes/seconds or decimal degrees: (if well field, one lat/long is sufficient)	22. Certifica	ation:	Digita	lly signed by Mike Tyr	MO.		4.00		
35 39 906 80 27 485	Mike 1	Γγnar		n::Mike Tynan, o, ou, -materieriasonicinter	national.cor	n.		11/1	9/15
N 00 27:400 W	Signature of C		Date:	2015.11.20 12:38:34-6 ntractor	5'00'	~~~		Date	
6. Is (are) the well(s): ☑Permanent or ☐Temporary	By signing thi	is form, 1 h	erehy	certify that					ed in accordance adards and that a
7. Is this a repair to an existing well: □Yes or ☑No If this is a repair, fill out known well construction information and explain the nature of the	copy of this re	cord has be	een pr	ovided to the	well o	wner.			
repair under #21 remarks section or on the back of this form.	23. Site diag							11 - 14 -	.t.+.:11
8. Number of wells constructed: 1	You may us construction								details or well
For multiple injection or non-water supply wells ONLY with the same construction, you can submit one form.	SUBMITTA			•			1 5 -		•
9. Total well depth below land surface: 11.86 For multiple wells list all depths if different (example-3@200' and 2@100')	24a. For A construction				orm w	rithin 3	0 days o	of comp	oletion of well
10. Static water level below top of casing: 5 If water level is above casing, use "+" (ft.)	I			ter Resour ervice Cen					
11. Borehole diameter: 8.5 (in.)	24b. For In	jection W	/ells	ONLY: Ir	addit	tion to	sending t in 30 da	the form	n to the address completion of w
12. Well construction method: auger (i.e. auger, rotary, cable, direct push, etc.)	construction	to the foll	lowin	ıg:					
FOR WATER SUPPLY WELLS ONLY:	DIVISIO	1636 M	ail S	sources, U ervice Cen	uuerg ter, R	aleigh,	NC 2769	99-1636	rol Program, í
13a. Yield (gpm) Method of test:	24c. For Wa	one cop	y of	this form	withir	n 30 da	ays of co	mpletio	n of
13b. Disinfection type: Amount:	well constru- constructed.	ection to t	he co	ounty healt	h dep	artmen	t of the	county	where

WELL CONSTRUCTION R		For Internal U	se ONLY:						
This form can be used for single or multiple wel	IS								
1. Well Contractor Information:		14. WATER	ZONES				Vija i		
Terry White		FROM	TO	DESCRIPT	ION				
Well Contractor Name	•	ft.	f						
3287-B		ft.	f						
NC Well Contractor Certification Number		15. OUTER FROM	CASING (fo	DIAMETE		OR LINE THICK		licable) MATE	RIAL
Terra Sonic International		0 ft.	5 f	t. 2	in.	Sch			pvc
Company Name		16. INNER FROM	CASING OF	TUBING (geo		al closed		MATE	PIAI
2. Well Construction Permit #:		ft.	f		in.	men	1ESS	MALL	MAL
List all applicable well permits (i.e. County, Stat	te, Variance, Injection, etc.)	ft.	f	t.	in.				
3. Well Use (check well use):		17. SCREE							
Water Supply Well:		FROM 5 ft.	то 20 ft.	DIAMETER in.		T SIZE	THICK		PVC
□Agricultural	□Municipal/Public	o ft.	20 ft.	in.	J U.	010	3011	140	FVC
☐Geothermal (Heating/Cooling Supply) ☐Industrial/Commercial	□ Residential Water Supply (single)	18. GROUT			L	7, 4			
□Irrigation	□Residential Water Supply (shared)	FROM	TO	MATERIA	L	EMPL	ACEMEN	T METI	IOD & AMOUNT
Non-Water Supply Well:		0 ft.		concrete	•	pour			
☑Monitoring	□Recovery	2 ft.	-	t. bentonit	e	pour			
Injection Well:		ft.	1	t.		<u> </u>			
□Aquifer Recharge	☐ Groundwater Remediation	19. SAND/O	RAVEL PA	CK (if applica MATERIA		·	EMPLAC	EMENT	METHOD
☐ Aquifer Storage and Recovery	□Salinity Barrier	4 ft.		t. #2 sili		and			gh augers
□ Aquifer Test	□Stormwater Drainage	ft.	f	t.					
□Experimental Technology □Geothermal (Closed Loop)	□Subsidence Control □Tracer			ttach additions					
☐Geothermal (Heating/Cooling Return)	☐Other (explain under #21 Remarks)	FROM ft.	TO	t. DESCRIP			nsultar		grain size, etc.)
		ft.		ř		00	iisuitai	11.3 100	·
4. Date Well(s) Completed: 11/10/1	5 Well ID# GVV-3	ft.		it.					
5a. Well Location:		ft.	ļ	ř.					
Kesler Mill		ft.		it.					
Facility/Owner Name	Facility ID# (if applicable)	ft.	<u> </u>	it.					
423 Martin Luther King Jr	Ave	ft.		it.					
Physical Address, City, and Zip		21. REMAI		**					
Rowan		ZX KISWAX	NAKO .						
County	Parcel Identification No. (PIN)								
5b. Latitude and Longitude in degrees/	minutes/seconds or decimal degrees:	22. Certific	ation:						
(if well field, one lat/long is sufficient) 35 39.898 80	07.504	Mike	Typa	Digitally signed by DN: cn=Mike Tynan email=mat@terrascc=US				440	40/45
33 39.696 N 60	27.531w				38-11-05'0	10'			19/15
6. Is (are) the well(s): ☑Permanent of	or □Temporary	Signature of 0					,	Date	
(,	- Camporary								ted in accordance andards and that a
7. Is this a repair to an existing well: If this is a repair, fill out known well construction	□Yes or ☑No	copy of this r	ecord has bee	en provided to ti	he well	owner.			
repair under #21 remarks section or on the back	k of this form.			lditional well					
8. Number of wells constructed: 1				of this page ou may also a					e details or well
For multiple injection or non-water supply well.	s ONLY with the same construction, you can			-	iluon e		радов .		,
submit one form.	20.31	SUBMITT							
9. Total well depth below land surface: For multiple wells list all depths if different (exc	ample- 3@200' and 2@100') (ft.)		All Wells: n to the follo		form	within 3	0 days	of con	apletion of well
10. Static water level below top of casin If water level is above casing, use "1"				Water Resor					
11. Borehole diameter: 8.5	(in.)	24b. For h	niection W	ells ONLY:	In add	dition to	sending	the for	rm to the address in
	 `,	24a above,	also submi	t a copy of					completion of we
12. Well construction method: auge (i.e. auger, rotary, cable, direct push, etc.)		construction	n to the foli	owing:					
FOR WATER SUPPLY WELLS ONL	V•	Divisio		r Resources, ail Service Co					trol Program, 36
FOR WATER SUFFLY WELLS ONL	I;	240 17				_	, / (
13a. Yield (gpm)	Method of test:	,		y & Injection of this form		_	ays of co	ompleti	ion of
13b. Disinfection type:	Amount:			ne county he					

13b. Disinfection type:

constructed.

Amount:

WELL CONSTRUCTION R This form can be used for single or multiple wel		For Interna	l Use	ONLY:								
1. Well Contractor Information:												
Terry White		14. WAT										
Well Contractor Name		FROM		го	ft.	DESCRIPT	ION					
3287-B		f	\perp		ft.				···-			
NC Well Contractor Certification Number		1				ılti-cased w	vella) (DR LINE	R (if ann	lica hle		
	-	FROM	7	ro	1	DIAMETER	1	THICK			ERIAL	
Terra Sonic International		0 fi	وا		ft. 2	_	in.		h40	<u> </u>	PVC	
Company Name ,		FROM		SING O	RTUE	BING (geo DIAMETER	therm:	al closed THICK	-loop) NESS	MATI	ERIAL	
2. Well Construction Permit #: List all applicable well permits (i.e. County, State	. Konisan - Ini ni ni ni	f	-	1	ft.		in.					
	e, variance, injection, etc.)	ft	.		ft.		in.					
3. Well Use (check well use):		17. SCRE			7 514	METER	61.02	COMP	THE COL	NEC	MATERIAL	
Water Supply Well:		FROM ft.	24		2	METER in.		rsize 010	THICK		PVC	
□ Agricultural	□Municipal/Public	ft.	124	ft,	-	in.	0.	010	301	140	FVC	
☐ Geothermal (Heating/Cooling Supply) ☐ Industrial/Commercial	□ Residential Water Supply (single)	18. GROU	i IT		<u></u>				L			
	□Residential Water Supply (shared)	FROM	7	O		MATERIAL	-	EMPL	ACEMEN	T METI	IOD & AMOUNT	
Non-Water Supply Well:		0 ft	10			oncrete		pour				
☑Monitoring	□Recovery	5 ft	<u> </u>		_	entonite	-	pour				
Injection Well:		ft	١.		ft.							
□Aquifer Recharge	☐ Groundwater Remediation	19, SAND FROM		VEL PA	CK (i	if applicabl	le)	· · · · · · · · · · · · · · · · · · ·	EMBLAC	TEM ENT	METHOD	
□Aquifer Storage and Recovery	☐Salinity Barrier	7 ft			řt.	#2 silica sand			nd pour through auge			
□Aquifer Test	☐Stormwater Drainage	ft			řt.	72 0110		la pour tirrough augoro				
□Experimental Technology	□Subsidence Control	20. DRILI	LING	LOG (at	ttach a	additional	sheets	if necess	sarv)			
☐Geothermal (Closed Loop) ☐Geothermal (Heating/Cooling Return)	□Tracer	FROM ft.	T	0			ON (co	lor, hardn	ess, soil/ro		grain size, etc.)	
4. Date Well(s) Completed: 11/10/15 5a. Well Location:	Other (explain under #21 Remarks) Well ID# GW-4	ft.		f	it.				nsultan			
Kesler Mill		ft.	·	f	t.							
Facility/Owner Name	Facility ID# (if applicable)	ft.			t.							
423 Martin Luther King Jr		ft.		fi fi	t.	·						
Physical Address, City, and Zip		21. REMA										
Rowan					-							
County	Parcel Identification No. (PIN)											
5b. Latitude and Longitude in degrees/m (if well field, one lat/long is sufficient)	inutes/seconds or decimal degrees:	22. Certifi	catio		Olgitally si	igned by Mike Tyna	an					
35 39.891 _{s.} 80	27.576 _w	Mike	Ту	nan	email≃mat c=U\$	like Tynan, o, ou, støterrasonicintern		ı.		11/1	9/15	
N	W W	Signature of	Certi	fied Well		5.11.20 17:30:19-05 actor	2.00.			Date		
6. Is (are) the well(s): ☑Permanent or	•	with 15A NO	'AC' (2C .0100	or 15.	A NCAC 0	2C.02	00 Well			ed in accordance ndards and that a	
7. Is this a repair to an existing well: If this is a repair, fill out known well construction repair under #21 remarks section or on the back		23. Site dia	agrai	m or ade	dition	nal well d	etails:	:	tional w	ell site	details or well	
8. Number of wells constructed: 1 For multiple injection or non-water supply wells submit one form.	ONLY with the same construction, you can	constructio	n det	tails. Yo	ou may	y also atta	ach ad	ditional	pages if	necess	sary.	
9. Total well depth below land surface:	23.83 (ft.) aple- 3@200' and 2@100')	24a. For construction					orm w	rithin 30	days o	of com	pletion of well	
10. Static water level below top of casing If water level is above casing, use "+"	10 (ft.)					r Resour						
11. Borehole diameter: 8.5	(in.)	24a above,	also	submit	a co	py of thi	addit s forr	ion to s n withi	ending t n 30 da	he form	n to the address in completion of we	
12. Well construction method: auger (i.e. auger, rotary, cable, direct push, etc.)		constructio Divisi	on of	f Water	Reso	urces, Ur	nderg	round I	njection	Conti	rol Program,	
FOR WATER SUPPLY WELLS ONLY		24c. For W				vice Cent viection W		aleigh, l	NC 2769	9-1636)	
13a. Yield (gpm) N	lethod of test:	Also subm	it or	ne copy	of th	is form	within	30 da	ys of cor	npletio	n of	
13b. Disinfection type:	well constructed		on to the	e cou	nty healtl	h dep	artment	of the	county	where		

This form can be used for single or multiple well	s	For Int	ernal U	Jse ONLY:									
1. Well Contractor Information:						<u> </u>							
Terry White				ZONES			aar jar		. A				
Well Contractor Name		FROM	ft.	TO	ft.	DESCRIPT	ION						
3287-B			ft.	·	ft.			***************************************	·				
NC Well Contractor Certification Number		15. 0	UTER	CASING (f	or m	ulti-cased w	ells) O	R LINE	R (if applic	able)			
Terra Sonic International		FROM	1	то		DIAMETER		THICK		MATER			
		0	ft.	<u> </u>		2	in.		h40		PVC		
Company Name		FROM		CASING OI	RTU	JBING (geo DIAMETER		d closed THICK		MATER	HAL		
2. Well Construction Permit #:			ft.	1	ft.		in.						
List all applicable well permits (i.e. County, State	e, Variance, Injection, etc.)		ft.	1	ft.	<u> </u>	in.						
3. Well Use (check well use):			CREE										
Water Supply Well:		FROM	-	11 ft.	2	AMETER in.	SLOT	SIZE 010	THICKNE Sch4		PVC		
Agricultural	□Municipal/Public	 	ft.	ft.	1	in.		310	30114	-	FVC		
☐Geothermal (Heating/Cooling Supply) ☐Industrial/Commercial	☐Residential Water Supply (single)	18. G	ROUT		<u> </u>				<u> </u>				
	□ Residential Water Supply (shared)	FROM	1	то		MATERIAI		EMPI	LACEMENT	METHO	DD & AMOUNT		
Non-Water Supply Well:		0	ft.	0.5		concrete	!	pour	<u> </u>				
☑ Monitoring	□Recovery	0.5	ft.	<u> </u>		bentonite	e	pour	<u> </u>				
Injection Well:		L	ft.	1	ft.		_						
☐ Aquifer Recharge	☐Groundwater Remediation	19. SA		RAVEL PA	CK	(if applicab		100	EMPLACE	MENT	METHOD		
☐ Aquifer Storage and Recovery	□Salinity Barrier	1	ft.	+	ft.	#2 silic		nd		through augers			
□Aquifer Test	☐Stormwater Drainage	 -	ft.		ft.	72 0			pour c		, <u>uugui</u>		
□Experimental Technology	□Subsidence Control	20. D	RILLI	NG LOG (a	ttacl	h additional	sheets	if neces	ssarv)				
Geothermal (Closed Loop)	□Tracer	FROM	1	TO	-1		ION (co	lor, hard	ness, soil/rocl		rain size, etc.)		
☐Geothermal (Heating/Cooling Return)	☐Other (explain under #21 Remarks)	l	ft.		ft.		<u>s</u>	ee Co	nsultant'	s log			
4. Date Well(s) Completed: 11/10/1	5_ _{Well ID#} _GW-5		ft. ft.		ft. ft.			·					
5a. Well Location:		-	ft.	ļ	ft.								
Kesler Mill		-		<u> </u>									
Facility/Owner Name	Facility ID# (if applicable)		ft.		ft.								
423 Martin Luther King Jr			ft.		ft.								
Physical Address, City, and Zip			ft.		ft.								
Rowan		21. R	EMAI	RKS			<u> </u>						
County	Parcel Identification No. (PIN)	-											
5b. Latitude and Longitude in degrees/n		22 C		ation:			·····						
(if well field, one lat/long is sufficient)	07.407				n	igitally signed by Mi IN: cn=Mike Tynan, o	ke Tynan , ou,				0//-		
35 39.889 _N 80	27.467w	1411	NC	Tynaı	D:	mail-mateterrasoni late: 2015,11,20 17:3	7:12 -05'00'	al.com, c=US	· 	11/1	9/15		
6. Is (are) the well(s): Permanent of	r □Temporary	-		Certified Wel						Date			
(***, *== ******************************											ed in accordance dards and that a		
7. Is this a repair to an existing well:	□Yes or ☑No			ecord has bee									
If this is a repair, fill out known well construction repair under #21 remarks section or on the back		23. Si	te dia	gram or ac	dditi	ional well	details	s:					
8. Number of wells constructed: 1									ditional we al pages if		details or well		
For multiple injection or non-water supply wells	ONLY with the same construction, you can	Consti	uction	i details. I	ou i	may aiso at	lacii a	uartion	ai pages ii	HECESS	ary.		
submit one form.		SUB	MITT	AL INSTU	CT	IONS							
9. Total well depth below land surface: For multiple wells list all depths if different (exa	(ft.)			All Wells:			form v	vithin :	30 days of	com	oletion of well		
10. Static water level below top of casing: 4 (ft.) If water level is above casing, use "!"				Division of	f Wa	iter Resou			ation Proc , NC 2769				
11. Borehole diameter: 8.5	(in.)	24b.	For I				•	_			n to the address		
12. Well construction method: auger	 ` '	24a al	bove,		it a	copy of the					completion of v		
(i.e. auger, rotary, cable, direct push, etc.)						_	Jnder	ground	l Injection	Conti	rol Program,		
FOR WATER SUPPLY WELLS ONLY	Y:	Division of Water Resources, Underground Injection Control Program, 1636 Mail Service Center, Raleigh, NC 27699-1636											
13a. Yield (gpm) Method of test:			24c. For Water Supply & Injection Wells: Also submit one copy of this form within 30 days of completion of										
13b. Disinfection type:	Amount:	well		uction to t					nt of the c				
				٠.									

WELL CONSTRUCTION RECORD

This form can be used for single or multiple wel	For Internal Use ONLY:												
1. Well Contractor Information:													
Terry White				R ZONE	S								
Well Contractor Name		FROM	ft.	то	ft.	DESCRIPT	ION						
3287-B		-	ft.	 	ft.						·		
NC Well Contractor Certification Number		15. 01		CASIN		multi-cased w	ells) O	RLINE	R (if annli	cable)			
		FROM		то		DIAMETER		THICK		MATE			
Terra Sonic International		0	ft.	3	ft.	2	in.		h40		PVC		
Company Name		FROM	NER	TO	G OR 1	UBING (geo DIAMETER	herms	d closed THICK	-loop) NESS	MATE	RIAL		
2. Well Construction Permit #: List all applicable well permits (i.e. County, State	(a Vanisman Inication at a)		ft.		ft.		in.						
•	e, variance, injection, etc.)		ft.		ft.		in.						
3. Well Use (check well use):		17. SC FROM		N TO		DIAMETER	SLOT	CITE	THICKN	ree I	MATERIAL		
Water Supply Well: □Agricultural	Myminimal/Dublin	3		13	ft. 2			010	Sch4		PVC		
☐Geothermal (Heating/Cooling Supply)	☐ Municipal/Public ☐ Residential Water Supply (single)		ft.		ft.	in.							
☐ Industrial/Commercial	□Residential Water Supply (shared)	18. GI			L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
□Irrigation	Ercesidemiai Water Supply (Shared)	FROM	ft.	то	ft.	MATERIAL		1	ACEMENT	METH	OD & AMOUNT		
Non-Water Supply Well:		10		1		concrete	-	pour					
☑Monitoring	□Recovery] 1	ft.	2	ft.	bentonite	 	pour					
Injection Well:			ft.		ft.			<u> </u>					
□Aquifer Recharge	□Groundwater Remediation	19. SA FROM		RAVE:	L PACE	(if applicable) MATERIAL		T	EMPLACE	MENT	METHOD		
☐ Aquifer Storage and Recovery	□Salinity Barrier	2	ft.	13	ft.	#2 silic		nd			h augers		
□ Aquifer Test	□Stormwater Drainage		ft.		ft.								
©Experimental Technology	□Subsidence Control				G (attac	h additional							
Geothermal (Closed Loop)	□Tracer	FROM	ft.	то	ft.	DESCRIPTI					rain size, etc.)		
☐Geothermal (Heating/Cooling Return)	☐Other (explain under #21 Remarks)	¹ ├ ──	ft.		ft.		56	e Coi	nsultant	s log			
4. Date Well(s) Completed: 11/10/15	5 Well ID# GW-6	ļ	ft.	<u> </u>	ft.		···						
5a. Well Location:			ft.		ft.								
Kesler Mill													
Facility/Owner Name	Facility ID# (if applicable)		ft.		ft.								
423 Martin Luther King Jr			ft,		ft.								
Physical Address, City, and Zip			ft.		ft.								
Rowan		21. RE	MAR	KS									
County	Parcel Identification No. (PIN)	-											
5b. Latitude and Longitude in degrees/m	•				····								
(if well field, one lat/long is sufficient)	indies/seconds of decimal degrees.	22. Cei			Dig	stally signed by Mike Tyn	an.						
35 39.856 _N 80	27.491 _w	Mik	e l	lyna	an 🐃	cn=Mike Tynan, o, ou, bil matwterrasonscriter e: 2015.11.20 17:40:51 -0	ational.com	c US		11/19	9/15		
14	w	Signatur								Date			
6. Is (are) the well(s): ☑Permanent or	□Temporary	By signi	ng thi.	s form,	I hereby	certify that i	he wel	l(s) was	(were) coi	istructe	d in accordance		
7. Is this a repair to an existing well:	□Yes or ☑No					15A NCAC 0 rovided to the			Constructio	on Stan	dards and that a		
If this is a repair, fill out known well construction	information and explain the nature of the	,,,,			•								
repair under #21 remarks section or on the back	of this form.	23. Site	diag	g ram o i e the b	raddit ack of	ional well d this page to	etails: provi	: de addi	tional we	ll site	details or well		
8. Number of wells constructed: 1						may also atta							
For multiple injection or non-water supply wells submit one form.	ONLY with the same construction, you can	SUBM	ITTA	L INS	TUCT	IONS							
	12.87						rm 117	ithin 20) dave of	· comr	letion of well		
9. Total well depth below land surface: For multiple wells list all depths if different (example)	mple- 3@200' and 2@100') (ft.)	constru					IIII W	1111111 30	days of	Comp	iction of wen		
, ,	•					iter Resour	ces. Ir	ıforma	tion Proc	essing	Unit.		
10. Static water level below top of casing If water level is above casing, use "+"	:(ft.)		L	1617	Mail S	ervice Cent	er, R	aleigh,	NC 27699	9-1617	,		
11. Borehole diameter: 8.5	(in.)	24b. Fe	or Ini	jection	Wells	ONLY: In	addit	ion to s	ending th	e form	to the address in		
	_ ()	24a abo	ove, a	ılso sul	omit a	copy of thi	s forn	n withi	n 30 day	s of c	ompletion of we		
12. Well construction method: auger (i.e. auger, rotary, cable, direct push, etc.)		constru				_							
		Di	visior	n of Wa	ater Re	sources, U	idergi	round l	njection	Contr	ol Program,		
FOR WATER SUPPLY WELLS ONLY	;					ervice Cent		aicign,	NC 4/07	·-1030			
13a. Yield (gpm) N	Aethod of test:					Injection V this form		30 Ha	vs of com	nletio	n of		
13h Disinfection type	Amount:					ounty healt							
13b. Disinfection type:	constru				-	•							

This form can be used for single or multiple well	For Internal Use ONLY:												
1. Well Contractor Information:													
Terry White				ZONI	S								
Well Contractor Name		FROM	ft.	то	ft.	DESCRIPTION							
3287-B			ft.		ft.								
		15. OT		CASI		nulti-cased wells	OR LINI	CR (if annli	cable)				
NC Well Contractor Certification Number		FROM		TO		DIAMETER	THICK		MATE	RIAL			
Terra Sonic International		0	ft.	3	ft,	2 in.		h40		PVC			
Company Name		FROM	VER (TO TO	G OR T	UBING (geother) DIAMETER	mal closed THICK		MATE	RIAL			
2. Well Construction Permit #: List all applicable well permits (i.e. County, State	a Varianca Injection etc.)		ft.		ft.	in.							
	e, variance, injection, etc.)		ft.		ft.	in.							
3. Well Use (check well use):		17. SC FROM		TO	l r	DIAMETER SL	OT SIZE	THICKN	TSS	MATERIAL			
Water Supply Well: □ Agricultural	□Municipal/Public			18	ft. 2		0.010	Sch	_	PVC			
☐Geothermal (Heating/Cooling Supply)	□Residential Water Supply (single)		ft.		ft.	in.		T					
□Industrial/Commercial	□Residential Water Supply (shared)	18. GF	OUT			T '- 2' - =	7 25.25						
□Irrigation		FROM	ft.	1 TO	ft.	concrete	pou		METH	OD & AMOUNT			
Non-Water Supply Well:		1	ft.	2	ft.	bentonite	pou						
☑ Monitoring Injection Well:	□Recovery	 	ft.		ft.	bentonite	Pou						
□Aquifer Recharge	□Groundwater Remediation	19. SA		RAVE		(if applicable)							
□Aquifer Storage and Recovery	□Salinity Barrier	FROM		TO		MATERIAL				METHOD			
□Aquifer Test	☐Stormwater Drainage	2	ft.	18	ft.	#2 silica s	sand	pour	throu	gh augers			
□Experimental Technology	□Subsidence Control	20.77	ft.	1	ft.					- 			
□Geothermal (Closed Loop)	□Tracer	FROM	ULLI	NG LO	OG (atta	ch additional she DESCRIPTION			ck type,	grain size, etc.)			
☐Geothermal (Heating/Cooling Return)	☐Other (explain under #21 Remarks)		ft.		ft.	See Consultant's log				1			
4. Date Well(s) Completed: 11/10/15 Well ID# GW-7			ft.		ft.								
5a. Well Location:		-	ft.		ft.								
Kesler Mill		-	ft.		ft.								
Facility/Owner Name	Facility ID# (if applicable)		ft.		ft,		,						
423 Martin Luther King Jr	Ave		ft.	ļ	ft.								
Physical Address, City, and Zip		21. RI		RKS	14	<u> </u>							
Rowan													
County	Parcel Identification No. (PIN)												
5b. Latitude and Longitude in degrees/r (if well field, one lat/long is sufficient)	ninutes/seconds or decimal degrees:	22. Ce				Italia signed by Mike Typan			· · · · ·	1 /2 A A I V			
35 39.858 _N 80	27.459 _w	Mik	(e	Tyn	an	itsiny signati by Mike Tynan cn≃Mike Tynan, o, ou. si≅=matapterrasonicinternational.cor a: 2015.11.20 17:30:48 -05'00'	n, c=U5		11/	19/15			
		Signatu	re of (Certifie	d Well C	ontractor			Date				
6. Is (are) the well(s): ☐ Permanent o		with 15.	A NC	4Č 020	: .0100 o	r 15A NCAC 02C	.0200 We			ted in accordance indards and that a			
7. Is this a repair to an existing well: If this is a repair, fill out known well construction	☐Yes or ☑No on information and explain the nature of the				-	provided to the we							
repair under #21 remarks section or on the back	c of this form.					tional well deta		ditional w	ell site	details or well			
8. Number of wells constructed: 1		constr	action	detai	ls. You	may also attach	addition	al pages i	fneces	sary.			
For multiple injection or non-water supply wells submit one form.		SUBMITTAL INSTUCTIONS											
9. Total well depth below land surface: 18.31 For multiple wells list all depths if different (example-3@200' and 2@100') (ft.)					ells: S e follow		n within	30 days	of com	pletion of well			
10. Static water level below top of casing: 7 (ft.) If water level is above casing, use "1"			. 1			ater Resource Service Center							
11. Borehole diameter: 8.5	(in.)	24b. <u>F</u>	or L	njectio	n Well	s ONLY: In a	ddition to	sending	the for	m to the address			
12. Well construction method: auger (i.e. auger, rotary, cable, direct push, etc.)	r				ubmit a e follow		iorm wit	inin 30 da	ays of	completion of w			
FOR WATER SUPPLY WELLS ONLY	Y:	D	ivisio			Resources, Und Service Center							
13a. Yield (gpm)				ater S	Supply &	& Injection We	lls:						
						of this form wi county health							
13b. Disinfection type: Amount:			ucted		io ilic	county nearth	aopainit	01 1116	Count	,			

This form can be used for single or multiple well		For Int	ernal (Jse ONL	Υ:								
1. Well Contractor Information:	•												
Terry White				R ZONE	S	T = =======							
Well Contractor Name		FROM	ft.	TO	ft.	DESCRIPT	ION						
3287-B			ft.		ft.			<u>.</u>					
NC Well Contractor Certification Number		15. O	UTER	CASIN	G (for 1	multi-cased v	vells) C	R LINE	R (if applic	able)			
Terra Sonic International		FROM		TO	ft.	DIAMETEI		THICK	NESS !	MATE			
Company Name		0 16 IN		CASING		2 UBING (geo			h40	.,	PVC		
		FROM	1	то		DIAMETEI	2	THICK		MATE	RIAL		
2. Well Construction Permit #:	e, Variance, Injection, etc.)		ft.		ft.		in.						
3. Well Use (check well use):			ft.		ft.		in.						
Water Supply Well:		17. SO FROM	CREE	N TO	D	IAMETER	SLOT	SIZE	THICKNE	SS	MATERIAL		
□Agricultural	□Municipal/Public	5	ft.	20	ft. 2	in.	0.0	010	Sch40	0	PVC		
☐Geothermal (Heating/Cooling Supply)	□Residential Water Supply (single)		ft.		ft.	in.							
□Industrial/Commercial	□Residential Water Supply (shared)		ROUT					T #12 472	- COLLEGATOR N	e ramer	OD 6 AMOUNT		
□Irrigation		FROM	ft.	TO 1	ft.	concrete				METH	OD & AMOUNT		
Non-Water Supply Well:		 -	ft.	3	ft.	bentonite		pour	pour				
☑Monitoring Injection Well:	□Recovery	 	ft.	-	ft.	Demonite		pour			-		
□ Aquifer Recharge	☐Groundwater Remediation	19. SA		RAVET		(if applicab	le)	Ι					
□Aquifer Storage and Recovery	□Salinity Barrier	FROM	l	то		MATERIAI			EMPLACEM				
□Aquifer Test	□Stormwater Drainage	3	ft.	20	ft.	#2 silio	a sa	nd	pour th	roug	h augers		
□Experimental Technology	□Subsidence Control		ft.		ft.						. ,		
□Geothermal (Closed Loop)	□Tracer	FROM		NG LO	G (attac	h additional DESCRIPT	sheets ON (co	if necess lor, hards	sary) ness, soil/rock	type, g	rain size, etc.)		
☐Geothermal (Heating/Cooling Return)	☐Other (explain under #21 Remarks)		ft.		ft.				nsultant's				
4. Date Well(s) Completed: 11/10/15	5 _{Well ID#} GW-8		ft. ft.		ft. ft.								
5a. Well Location:			ft.		ft.				****				
Kesler Mill		-	ft.		ft.								
Facility/Owner Name	Facility ID# (if applicable)		ft.		ft.								
423 Martin Luther King Jr	Ave		ft.		ft.					·····			
Physical Address, City, and Zip	•	21. RI		Ve.	11.								
Rowan		21. KI	PIATURE	LINUS .									
County	Parcel Identification No. (PIN)		***********										
5b. Latitude and Longitude in degrees/m (if well field, one lat/long is sufficient)	ninutes/seconds or decimal degrees:	22. Ce	rtifica	ation:		Digitally signed by N	Aike Tynan						
	27.46	Mil	œ ·	Tyn	an	Digitally signed by M DN: cn≔Mike Tynan, email=mat@terraso c∵US	o, ou, nicinternat	ional.com,		11/1	9/15		
N	W W	Signatu	re of C	ertified	Well Co	Date: 2015:11:20 17 intractor	41:12 -05 '(00'		ate			
6. Is (are) the well(s): ☐Permanent or	□Temporary	By sign	ing thi	s form,	l hereby	certify that	the wei	ll(s) was	(were) cons Construction	structe n Stan	d in accordance dards and that a		
7. Is this a repair to an existing well: If this is a repair, fill out known well construction	□Yes or ☑No	copy of	this re	cord has	heen pi	rovided to the	well or	wner.					
repair under #21 remarks section or on the back		23. Sit	e diag	gram or	addit	ional well d	letails	: :33-4:	itiamal sumll	Laita	dataile or well		
8. Number of wells constructed: 1 For multiple injection or non-water supply wells	ONLY with the same construction you can	You may use the back of this page to provide additional well site details or well construction details. You may also attach additional pages if necessary.											
submit one form.		**		AL INS					0 1 2				
9. Total well depth below land surface: 20.31 (ft.) For multiple wells list all depths if different (example-3@200' and 2@100')			24a. For All Wells: Submit this form within 30 days of completion of well construction to the following:										
10. Static water level below top of casing: 8 (ft.)			ſ	Division 1617	of Wa Mail S	iter Resoui Service Cen	ces, I ter, R	nforma aleigh,	tion Proce NC 27699-	ssing -1617	Unit,		
11. Borehole diameter: 8.5	(in.)	24b. <u>F</u> 24a ab	or In	jection also sub	Wells omit a	ONLY: In	addit	ion to s n withi	sending the in 30 days	form of c	to the address ompletion of v		
12. Well construction method: auger (i.e. auger, rotary, cable, direct push, etc.)		constru	iction	to the f	ollowi	ng:					ol Program,		
FOR WATER SUPPLY WELLS ONLY	:			1636	Mail S	service Cen	ter, R	aleigh,	NC 27699	-1636	. <u> </u>		
13a. Yield (gpm) N	Aethod of test:	24c. For Water Supply & Injection Wells: Also submit one copy of this form within 30 days of completion of											
13b. Disinfection type:	Amount:	well constru	onstru	iction to	the c	ounty healt	h dep	artment	of the co	unty	where		
· · · · · · · · · · · · · · · · · · ·		• CONSUL	ALITU.										

Form GW-1

This form can be used for single or multiple wells	For Internal Use ONLY:												
1. Well Contractor Information:													
Terry White				ZONES	S	DESCRIPTION		100					
Well Contractor Name		FROM	ft.		ft.								
3287-B			ft.		ft.	<u> </u>	-	·					
NC Well Contractor Certification Number		15. OUTER CASING (for multi-cased wells) OR LINER (if applicable)											
Terra Sonic International		FROM	ft.	то 9	ft.	DIAMETER in.	THICK	h40	IATER	PVC			
Company Name		1 -	NER (, -	OR T	UBING (geotherm	al closed	l-loop)					
2. Well Construction Permit #:	•	FROM	ft.	TO	ft.	DIAMETER in.	THICK	NESS N	IATER	IAL			
List all applicable well permits (i.e. County, State	. Variance, Injection, etc.)		ft.		ft.	ip.							
3. Well Use (check well use):		17. SC			11.	· · · · · · · · · · · · · · · · · · ·		L					
Water Supply Well:		FROM		то			TSIZE	THICKNES	SS	MATERIAL			
□Agricultural	□Municipal/Public	9		24	ft. 2		010	Sch40		PVC			
□Geothermal (Heating/Cooling Supply)	□Residential Water Supply (single)		ft.		ft.	in.							
□Industrial/Commercial	□Residential Water Supply (shared)	18. G		то		MATERIAL	EMP	LACEMENT N	/ETHO	DD & AMOUNT			
□Irrigation Non-Water Supply Well:		0	ft.	5	ft.	concrete	pou	r					
Monitoring	□Recovery	5	ft.	7	ft.	bentonite	pou	r					
Injection Well:	Litecovery		ft.		ft.								
□ Aquifer Recharge	☐Groundwater Remediation				PACK	(if applicable) MATERIAL		EMPLACEM	(ENT I	VETUOD			
☐ Aquifer Storage and Recovery	□Salinity Barrier	FROM	ft.	то 24	ft.	#2 silica sa	and			h augers			
□ Aquifer Test	☐Stormwater Drainage	 	ft.		ft.			pour u					
□Experimental Technology	□Subsidence Control	20. D	RILLI	NG LO	G (attac	l :h additional sheet	s if nece	ssary)					
□Geothermal (Closed Loop)	□Tracer	FROM	ft.	то	ft.	DESCRIPTION (rain size, etc.)			
☐Geothermal (Heating/Cooling Return)	□Other (explain under #21 Remarks)	┚├───		 			see Co	onsultant's	log				
4. Date Well(s) Completed: 11/10/1	5_ _{Well ID#} _GW-9	-	ft. ft.		ft. ft.								
5a. Well Location:		}	ft.	 	ft.								
Kesler Mill			ft.		ft.								
Facility/Owner Name	Facility ID# (if applicable)		ft.		ft.								
423 Martin Luther King Jr	Ave		ft.		ft.								
Physical Address, City, and Zip		21. R	EMAI	≥KS		44.							
Rowan		2.,12	<u> </u>										
County	Parcel Identification No. (PIN)												
5b. Latitude and Longitude in degrees/n (if well field, one lat/long is sufficient)	ninutes/seconds or decimal degrees:	22. Ce	rtific	ation:		Digitally signed by Mike Tyna	n						
35 39.866 _N 80	27.529 _w	Mik	(e T	Tyn	an	DN: cn=Mike Tynan, o, ou, emall=mat@terrasonicintern: c=US	ational.com,		11/1	9/15			
	· ·					Date: 2015: 11:20 17:41:42 - 05 Ontractor	'00'		Date				
6. Is (are) the well(s): ☐Permanent of	r					y certify that the w r 15A NCAC 02C .							
7. Is this a repair to an existing well: If this is a repair, fill out known well construction	□Yes or ☑No	сору ој	this r	ecord ha	s been p	provided to the well	owner.						
repair under #21 remarks section or on the back						tional well detai				1. 9			
8. Number of wells constructed: 1						this page to pro may also attach							
For multiple injection or non-water supply wells submit one form.	ONLY with the same construction, you can	construction details. You may also attach additional pages if necessary. SUBMITTAL INSTUCTIONS											
·	24 (ft.)					ubmit this form	within	30 days of	com	oletion of well			
For multiple wells list all depths if different (exa	mple- 3@200' and 2@100')			to the				,5 31	1				
10. Static water level below top of casing If water level is above casing, use ";"	g:(ft.)					ater Resources, Service Center,							
11. Borehole diameter: 8.5	(in.)	24b.]	For L	njection	Well	SONLY: In add	dition to	sending th	e form	n to the addres			
12. Well construction method: auger	•	24a above, also submit a copy of this form within 30 days of completion of construction to the following:											
(i.e. auger, rotary, cable, direct push, etc.)				n of W	ater R	tesources, Unde							
FOR WATER SUPPLY WELLS ONLY	Y:]				Service Center,		h, NC 27699)-1630	6			
13a. Yield (gpm)	Method of test:	24c. For Water Supply & Injection Wells: Also submit one copy of this form within 30 days of completion of											
13b. Disinfection type:	Amount:		onstr	uction		county health d							
	- const	uoicu											

This form can be used for single or multiple wells 1. Well Contractor Information:								
1. Well Contractor Information:			•					1
Terry White	ATER	ZONES						
Well Contractor Name	ft.	TO ft	DESCRIPT	ION				
3287-B	ft.	ft						
			multi-cased v	rells) O	R LINE	R (if appli	icable)	
Torro Conic International		TO	DIAMETER	1	THICKN	NESS	MATE	
	ft. NER (J	2 TUBING (geo	in. therms	Sch			PVC
FROM		TO ft.	DIAMETER		THICKN		MATE	RIAL
2. Well Construction Permit #: List all applicable well permits (i.e. County, State, Variance, Injection, etc.)	ft. ft.	ft.		in.				
3. Well Use (check well use):	l							
Water Supply Well:		то	DIAMETER in.		SIZE	THICKN		MATERIAL
D'Agriculturai D'Municipal/Public	ft.	30 ft.	2 ^{in.} in.		010	Sch4	40	PVC
Decomermal (reading/Cooling Supply) Dresidential water Supply (single)						-		
Residential Water Supply (Shared)		то	MATERIAL		EMPL	ACEMENT	METH	OD & AMOUNT
O Non-Water Supply Well:	ft.	1 ft.	concrete		pour			
☑Monitoring □Recovery 1	ft.	3 ft.	bentonite)	pour			
Injection Well:	ft.	ft.						
FROM	ND/G	RAVEL PAC	K (if applicab MATERIAL			EMPLACE	EMENT	METHOD
□ Aquiter Storage and Recovery □ Salinity Barrier □ 3	ft.	30 ft.						h augers
□ Aquifer Test □ Stormwater Drainage □ Experimental Technology □ Subsidence Control	ft.	ft.	· · · · · · · · · · · · · · · · · · ·					
20. DR	ILLI	NG LOG (att	ch additional				I tema	rain size, etc.)
□Geothermal (Closed Loop) □ Iracer □ FROM □Geothermal (Heating/Cooling Return) □ Other (explain under #21 Remarks)	ft.	ft.	DESCRIPTI			nsultant		rain size, etc./
4. Date Well(s) Completed: 11/10/15 Well ID# GW-10	ft.	ft.						
	ft.	ft.		.,				
5a. Well Location:	ft.	ft.						
Kesler Mill	ft.	ft.						
Facility/Owner Name Facility ID# (if applicable) 423 Martin Luther King Jr Ave	ft.	ft.						
Physical Address, City, and Zip	ft.	ft.						
Rowan	MAR	KS					<u>_</u>	
County Parcel Identification No. (PIN)								
5b. Latitude and Longitude in degrees/minutes/seconds or decimal degrees: (if well field, one lat/long is sufficient) 22. Cert	tifica	D	gitally signed by Mike T	ynan				
35 39.833 _N 80 27.503 _W Mik	e T	ីynan ្ពឹ	l: cn=Mike Tynan, o, ou, nail=mat@terrasonicinte c∵US	ernational.c	·o		11/1	9/15
— — — — — — — — — — — — — — — — — — —	e of Ce	entified Well (ontractor	05:00:			Date	
with 15A	NC'A	C 02C .0100 d	or 15A NCAC (02C .02	00 Well (d in accordance dards and that a
If this is a repair, fill out known well construction information and explain the nature of the			provided to the					
You ma	av use	the back o	i tional well d f this page to	provi	ide addit	tional we	ell site	details or well
8. Number of wells constructed: construct For multiple injection or non-water supply wells ONLY with the same construction, you can	ction	details. You	may also att	ach ad	lditional	pages if	necess	ary.
submit one form.		L INSTUC						
		l Wells: S to the follov		orm w	rithin 30) days of	f comp	oletion of well
10. Static water level below top of casing: 15 If water level is above casing, use "+" (ft.)	D	ivision of V 1617 Mail	/ater Resour Service Cen	ces, I ter, R	nformat aleigh, l	tion Proc NC 276 9	cessing 9-1617	Unit,
24a ahov	ve, a	ection Wel lso submit	SONLY: Ir	addit	ion to s	ending th n 30 day	ne form	to the address in ompletion of well
12. Well construction method: auger construc	ction	to the follov of Water I	ring: Resources, U	nderg	round I	njection	Contr	ol Program,
FOR WATER SUPPLY WELLS ONLY:		1636 Mail	Service Cen	ter, R	aleigh, I	NC 2769	9-1636	
13a. Yield (gpm) Method of test: Also su	bmit	one copy	& Injection V of this form	withir	1 30 day	ys of com	npletio	n of
13b. Disinfection type: Amount: well corconstruction		ction to the	county healt	n dep	artment	of the c	county	wnere

WELL CONSTRUCTION R This form can be used for single or multiple well		For Internal	Use	ONLY:				***		
1. Well Contractor Information:										
Terry White		14. WATE	ER 2	CONES						
Well Contractor Name		FROM ft.		TO ft.	DESCRIPTION	ON				
3287-B		ft.		ft.	ļ					
NC Well Contractor Certification Number					multi-cased w	ells) ()R LINE	R (if ann	licable)	
Terra Sonic International		FROM	I	TO	DIAMETER		THICK	NESS	MATE	
		0 ft		ft.	2 UBING (geot	in.	Sch		L	PVC
Company Name		FROM	I	TO	DIAMETER		THICK		MATE	ERIAL
2. Well Construction Permit #: List all applicable well permits (i.e. County, Stat	e. Variance. Injection. etc.)	ft		ft.		in.			<u> </u>	
3. Well Use (check well use):	-, ,,,,,	ft		ft.	<u> </u>	in.			<u> </u>	
Water Supply Well:		17. SCRE FROM		ОГ	DIAMETER	SLO	T SIZE	THICK	NESS	MATERIAL
□Agricultural	□Municipal/Public	2 ft.	1:	2 ft. 2	in.	0.	010	Sch	140	PVC
☐Geothermal (Heating/Cooling Supply)	□Residential Water Supply (single)	ft.		ft.	in.					
□Industrial/Commercial	□Residential Water Supply (shared)	18. GROU		то	MATERIAL		EMPL	ACEMEN	T METI	HOD & AMOUNT
□Irrigation Non-Water Supply Well:		0 ft	.]	0.5 ft.	concrete		pour			
Monitoring	□Recovery	0.5 ft	.	1 ft.	bentonite)	pour			
Injection Well:	Encovery	ft	-	ft.						
□ Aquifer Recharge	☐ Groundwater Remediation	19. SAND FROM			K (if applicabl			EM'n' '	TERM VIEW	METHOD
☐ Aquifer Storage and Recovery	□Salinity Barrier	1 ft	_	то 12 ^{ft.}	#2 silic		and			igh augers
□Aquifer Test	☐Stormwater Drainage	ft	-+-	ft.	#2 31110		-	Pour	11100	giraageis
□Experimental Technology	□Subsidence Control	20. DRIL	LIN	G LOG (atta	ch additional	sheet	s if neces	sary)		
Geothermal (Closed Loop)	□Tracer	FROM		TO ft.		ON (c	olor, hardı	ness, soil/r		grain size, etc.)
Geothermal (Heating/Cooling Return)	Other (explain under #21 Remarks)	ft		ft.			See Co	nsuitai	nt's log	9
4. Date Well(s) Completed: 11/10/1	5 Well ID# GVV-11	ft	4	ft.						
5a. Well Location:		ft	_	ft.						
Kesler Mill		fr	-	ft.	<u> </u>					
Facility/Owner Name	Facility ID# (if applicable)	ft		ft.						
423 Martin Luther King Jr	Ave	ft		ft.	ļ					
Physical Address, City, and Zip		21. REM			<u> </u>					
Rowan									***	
County	Parcel Identification No. (PIN)									
5b. Latitude and Longitude in degrees/n (if well field, one lat/long is sufficient)	ninutes/seconds or decimal degrees:	22. Certif			Digitally signed by Mile	ke Iynan	····			
35 39.837 _N 80	27.445 _w	Mike	Τ :	īynan 🤄	DN: cn≔Mike Tynan, o, email=mat@terrasonic , c=US	, ou, cinternat	ional.com		11/	19/15
				rtified Well C		06.0	10'		Date	
6. Is (are) the well(s): Permanent o		with 15A N	CAC	02C .0100 o	r 15A NCAC (02C .0)200 Well			ted in accordance andards and that a
7. Is this a repair to an existing well: If this is a repair, fill out known well constructed				-	provided to the					
repair under #21 remarks section or on the back	t of this form.		-		tional well d f this page to			litional	well sit	e details or well
8. Number of wells constructed: For multiple injection or non-water supply wells	With the second				may also att					
submit one form.		SUBMIT	TA	L INSTUC	TIONS					
9. Total well depth below land surface: For multiple wells list all depths if different (exc	12 (ft.)			Wells: So the follow		orm	within 3	30 days	of con	npletion of well
10. Static water level below top of casin If water level is above casing, use """	g:(ft.)		D		ater Resou Service Cen					
11. Borchole diameter: 8.5	(in.)	24a above	, al	lso submit a	copy of th					m to the address completion of w
12. Well construction method: auger (i.e. auger, rotary, cable, direct push, etc.)				to the follow of Water R	_	nder	ground	Injectio	on Con	trol Program,
FOR WATER SUPPLY WELLS ONLY	Y:]		1636 Mail	Service Cen	iter,	Raleigh			
13a. Yield (gpm)	Method of test:	Also sub	mit	one copy o	& Injection of this form	with	- in 30 d		•	
13b. Disinfection type:	Amount:	well cons		ction to the	county heal	th de	epartmer	nt of the	count	y where

This form can be used for single or multiple wel		For In	ternal (Jse ONLY:					
1. Well Contractor Information:									
Terry White		14. V		R ZONES	DESCRIPTION				
Well Contractor Name		FRO	ft.	ft					
3287-B			ft.	ft					
NC Well Contractor Certification Number					r multi-cased wells)				
Terra Sonic International		FROM	M ft.	14 ft	DIAMETER in.	THICK	ch40	MATERI	PVC
Company Name				1-4	TUBING (geother)	1			- VC
2. Well Construction Permit #:		FRO	И ft.	TO	DIAMETER in.	THICK	KNESS I	MATER	AL
List all applicable well permits (i.e. County, Stat	te, Variance, Injection, etc.)			L		<u> </u>			
3. Well Use (check well use):		17.0	ft.	ft	111.				
Water Supply Well:		FROM		TO		T SIZE	THICKNE	SS	MATERIAL
□Agricultural	☐Municipal/Public	14	ft.	29 ft.	2 ^{in.} C	.010	Sch4	0	PVC
☐Geothermal (Heating/Cooling Supply)	□Residential Water Supply (single)		ft.	ft.	in.				
□Industrial/Commercial	☐Residential Water Supply (shared)	18. G	ROUT	TO	MATERIAL	EMP	LACEMENT !	метно	D & AMOUNT
□ Irrigation		0	ft.	10 ft.	neat cement				
Non-Water Supply Well: ☑Monitoring	□Recovery	10	ft.	12 ft.	bentonite	pou	r .		
Injection Well:	Littouvery		ft.	ft.		—	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
□Aquifer Recharge	☐Groundwater Remediation				K (if applicable)		PMP - C	AESTE S	ETHOS
☐ Aquifer Storage and Recovery	□Salinity Barrier	FROM 12	ft.	то 29 ft.	#2 silica s	and	EMPLACEN		augers
□ Aquifer Test	☐Stormwater Drainage	12	ft.	£5		anu	pour u		augera
□Experimental Technology	□Subsidence Control	20. D			ach additional shee	ts if nece	ssarv)		
□Geothermal (Closed Loop)	□Tracer	FROM	1	TO	DESCRIPTION (olor, hard	lness, soil/rock		un size, etc.)
☐Geothermal (Heating/Cooling Return)	□Other (explain under #21 Remarks)	J	ft.	ft.		See Co	onsultant's	s log	
4. Date Well(s) Completed: 11/10/15	5 _{Well ID#} GW-12	<u> </u>	ft. ft.	ft. ft.					
5a. Well Location:		-	ft.	ft.					
Kesler Mill		L							
Facility/Owner Name	Facility ID# (if applicable)		ft.	ft. ft.					
423 Martin Luther King Jr	Ave		ft.	ft.					
Physical Address, City, and Zip		21 D	ft. EMAR	<u> </u>	1				
Rowan		21. K	EVIAR	IN.S	· · · · · · · · · · · · · · · · · · ·	 			
County	Parcel Identification No. (PIN)	-		***************************************					
5b. Latitude and Longitude in degrees/n	ninutes/seconds or decimal degrees:	22. Ce	rtific	ation:					.,
(if well field, one lat/long is sufficient)	27.462	M	ike	Typa	Digitally signed by Mike DN: cn=Mike Tynan, o, a email@mal@terrasonici Date: 2015.11.20 17:29:	Tynan Su,	am calls	11/10	/1E
35 39.805 _N 80	27.462 _w					27 -05'00'		11/19/ Date	115
6. Is (are) the well(s): ☑Permanent or	Temporary	By sigi	ning thi		ontractor by certify that the w or 15A NCAC 02C .		s (were) cons	structed	
	□Yes or ⊠No				provided to the well				
lf this is a repair, fill out known well construction repair under #21 remarks section or on the back		23. Si	te diag	gram or add	itional well detai	ls:			
Number of walls constructed.		You n	nay us	e the back of	f this page to pro may also attach	vide add	iitional well al pages if n	l site di ecessar	etails or wel
8. Number of wells constructed: The supply wells injection or non-water supply wells	ONLY with the same construction, you can						r 0 1. 11		•
submit one form.	30			AL INSTUC					
9. Total well depth below land surface: _ For multiple wells list all depths if different (example)				ll Wells: S to the follow	ubmit this form ving:	within 3	30 days of	comple	etion of wel
10. Static water level below top of casing If water level is above casing, use ": "	: 20 (ft.)		Ι	Division of V 1617 Mail	Vater Resources, Service Center,	Inform Raleigh,	ation Proce , NC 27699	essing U -1617	Unit,
11. Borehole diameter: 8.5	(in.)	24a at	ove, a	also submit	Is ONLY: In adda copy of this fo	lition to rm with	sending the nin 30 days	form to	to the addres
12. Well construction method: auger (i.e. auger, rotary, cable, direct push, etc.)				to the follov n of Water I	Resources, Under	ground	Injection (Control	l Program,
FOR WATER SUPPLY WELLS ONLY				1636 Mail	Service Center,	Raleigh	, NC 27699	-1636	
13a. Yield (gpm)		Also :	submit	one copy	& Injection Wells of this form with county health de	in 30 d	lays of comp	pletion ounty w	of here
13b. Disinfection type:	Amount:	constr		iction to the	county health de	parmici	0. 1110 00	y W	

	Former Kesler Mill/Fieldcrest Cannon Plant #7 Phase II Environmental Site Assessment (ES	SA)
•		
APPENDIX B:	Analytical Reports w/Chains-of-Custody	
February 16, 2016	Cardno	

NC Certification No. 402 SC Certification No. 99012 NC Drinking Water Cert No. 37735 VA Certification No. 460211 DoD ELAP: L-A-B Accredited Certificate No. L2307

Case Narrative

11/19/2015

Cardno - Charlotte Christine Schaefer 7606 Whitehall Executive Center Drive, Suite 800 Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

ISO/IEC 17025: L-A-B Accredited Certificate No. L2307

Lab Submittal Date: 11/05/2015 Prism Work Order: 5110128

This data package contains the analytical results for the project identified above and includes a Case Narrative, Sample Results and Chain of Custody. Unless otherwise noted, all samples were received in acceptable condition and processed according to the referenced methods.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative.

Please call if you have any questions relating to this analytical report.

Respectfully,

PRISM LABORATORIES, INC.

Angela D. Overcash

VP Laboratory Services

Reviewed By Terri W. Cole For Angela D. Overcash

arrie OCO

Project Manager

Data Qualifiers Key Reference:

CCV result is below the control limits. LCS recovery within the limits. Analyte not detected in the sample. No further CVL action taken.

D RPD value outside of the control limits.

Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

ı Parameter reported with possible low bias. LCS recovery below the QC limit.

М Matrix spike outside of the control limits.

MC Sample concentration too high for recovery evaluation.

Matrix spike outside of the control limits. Matrix interference suspected. MI

BRL Below Reporting Limit MDL Method Detection Limit **RPD** Relative Percent Difference

Results reported to the reporting limit. All other results are reported to the MDL with values between MDL and reporting limit indicated with a J.

Sample Receipt Summary

11/19/2015

Prism Work Order: 5110128

Client Sample ID	Lab Sample ID	Matrix	Date Sampled	Date Received
GW-1 (0-1)	5110128-01	Solid	11/04/15	11/05/15
GW-1 (2-4)	5110128-02	Solid	11/04/15	11/05/15
GW-4 (0-1)	5110128-03	Solid	11/04/15	11/05/15
GW-4 (5-7)	5110128-04	Solid	11/04/15	11/05/15
GW-3 (0-1)	5110128-05	Solid	11/04/15	11/05/15
GW-3 (4-6)	5110128-06	Solid	11/04/15	11/05/15
GW-9 (0-1)	5110128-07	Solid	11/04/15	11/05/15
GW-9 (4-6)	5110128-08	Solid	11/04/15	11/05/15

Samples were received in good condition at 4.4 degrees C unless otherwise noted.

Summary of Detections

11/19/2015

Prism Work Order: 5110128

Prism ID	Client ID	Parameter	Method	Result		Units
5110128-01	GW-1 (0-1)	Acetone	8260B	0.092		mg/kg dry
5110128-03	GW-4 (0-1)	1-Methylnaphthalene	8270D	0.12	j	mg/kg dry
5110128-03	GW-4 (0-1)	2-Methylnaphthalene	8270D	0.15	J	mg/kg dry
5110128-03	GW-4 (0-1)	Acenaphthene	8270D	0.22	J	mg/kg dry
5110128-03	GW-4 (0-1)	Acenaphthylene	8270D	0.87		mg/kg dry
5110128-03	GW-4 (0-1)	Anthracene	8270D	1.4		mg/kg dry
5110128-03	GW-4 (0-1)	Benzo(a)anthracene	8270D	2.3		mg/kg dry
5110128-03	GW-4 (0-1)	Benzo(a)pyrene	8270D	1.7		mg/kg dry
5110128-03	GW-4 (0-1)	Benzo(b)fluoranthene	8270D	2.2		mg/kg dry
110128-03	GW-4 (0-1)	Benzo(g,h,i)perylene	8270D	0.85		mg/kg dry
110128-03	GW-4 (0-1)	Benzo(k)fluoranthene	8270D	0.92		mg/kg dry
110128-03	GW-4 (0-1)	Chrysene	8270D	1.8		mg/kg dry
5110128-03	GW-4 (0-1)	Dibenzo(a,h)anthracene	8270D	0.24	j	mg/kg dry
110128-03	GW-4 (0-1)	Dibenzofuran	8270D	0.42		mg/kg dry
110128-03	GW-4 (0-1)	Fluoranthene	8270D	4.6		mg/kg dry
110128-03	GW-4 (0-1)	Fluorene	8270D	0.36	J	mg/kg dry
110128-03	GW-4 (0-1)	Indeno(1,2,3-cd)pyrene	8270D	0.92		mg/kg dry
110128-03	GW-4 (0-1)	Naphthalene	8270D	0.18	J	mg/kg dry
110128-03	GW-4 (0-1)	Phenanthrene	8270D	4.5		mg/kg dry
110128-03	GW-4 (0-1)	Pyrene	8270D	4.0		mg/kg dry
110128-03	GW-4 (0-1)	Aluminum	*6010C	20000		mg/kg dry
110128-03	GW-4 (0-1)	Mercury	*7471B	0.084		mg/kg dry
110128-03	GW-4 (0-1)	Arsenic	*6010C	6.2		mg/kg dry
110128-03	GW-4 (0-1)	Barium	*6010C	18		mg/kg dry
110128-03	GW-4 (0-1)	Calcium	*6010C	290		mg/kg dry
110128-03	GW-4 (0-1)	Chromium	*6010C	22		mg/kg dry
110128-03	GW-4 (0-1)	Cobalt	*6010C	0.97		mg/kg dry
110128-03	GW-4 (0-1)	Copper	*6010C	1.1		mg/kg dry
110128-03	GW-4 (0-1)	Iron	*6010C	17000		mg/kg dry
110128-03	GW-4 (0-1)	Lead	*6010C	9.3		mg/kg dry
110128-03	GW-4 (0-1)	Magnesium	*6010C	680		mg/kg dry
110128-03	GW-4 (0-1)	Manganese	*6010C	9.1		mg/kg dry
110128-03	GW-4 (0-1)	Nickel	*6010C	3.3		mg/kg dry
110128-03	GW-4 (0-1)	Potassium	*6010C	440		mg/kg dry
110128-03	GW-4 (0-1)	Sodium	*6010C	53		mg/kg dry
110128-03	GW-4 (0-1)	Vanadium	*6010C	35		mg/kg dry
110128-03	GW-4 (0-1)	Zinc	*6010C	7.7		mg/kg dry
110128-04	GW-4 (5-7)	Acenaphthene	8270D	0.17	J	mg/kg dry
110128-04	GW-4 (5-7)	Acenaphthylene	8270D	0.74		mg/kg dry
110128-04	GW-4 (5-7)	Anthracene	8270D	1.3		mg/kg dry
110128-04	GW-4 (5-7)	Benzo(a)anthracene	8270D	2.1		mg/kg dry
110128-04	GW-4 (5-7)	Benzo(a)pyrene	8270D	1.5		mg/kg dry
5110128-04	GW-4 (5-7)	Benzo(b)fluoranthene	8270D	2.0		mg/kg dry
5110128-04	GW-4 (5-7)	Benzo(g,h,i)perylene	8270D	0.77		mg/kg dry

Summary of Detections

11/19/2015

Prism Work Order: 5110128

Prism ID	Client ID	Parameter	Method	Result		Units
5110128-04	GW-4 (5-7)	Benzo(k)fluoranthene	8270D	0.64		mg/kg dry
5110128-04	GW-4 (5-7)	Chrysene	8270D	1.7		mg/kg dry
5110128-04	GW-4 (5-7)	Dibenzo(a,h)anthracene	8270D	0.22	j	mg/kg dry
5110128-04	GW-4 (5-7)	Dibenzofuran	8270D	0.34	J	mg/kg dry
110128-04	GW-4 (5-7)	Fluoranthene	8270D	4.2		mg/kg dry
110128-04	GW-4 (5-7)	Fluorene	8270D	0.25	J	mg/kg dry
110128-04	GW-4 (5-7)	Indeno(1,2,3-cd)pyrene	8270D	0.85		mg/kg dry
110128-04	GW-4 (5-7)	Naphthalene	8270D	0.13	J	mg/kg dn
110128-04	GW-4 (5-7)	Phenanthrene	8270D	3.6		mg/kg dr
110128-04	GW-4 (5-7)	Pyrene	8270D	3.6		mg/kg dr
110128-04	GW-4 (5-7)	Aluminum	*6010C	29000		mg/kg dr
110128-04	GW-4 (5-7)	Mercury	*7471B	0.045		mg/kg dr
110128-04	GW-4 (5-7)	Arsenic	*6010C	3.1		mg/kg dr
110128-04	GW-4 (5-7)	Barium	*6010C	79		mg/kg dr
110128-04	GW-4 (5-7)	Beryllium	*6010C	0.99		mg/kg dr
5110128-04	GW-4 (5-7)	Cadmium	*6010C	0.37		mg/kg dr
5110128-04	GW-4 (5-7)	Calcium	*6010C	850		mg/kg dr
5110128-04	GW-4 (5-7)	Chromium	*6010C	30		mg/kg dr
5110128-04	GW-4 (5-7)	Cobalt	*6010C	21		mg/kg di
110128-04	GW-4 (5-7)	Copper	*6010C	55		mg/kg di
110128-04	GW-4 (5-7)	Iron	*6010C	68000		mg/kg di
110128-04	GW-4 (5-7)	Lead	*6010C	13		mg/kg d
110128-04	GW-4 (5-7)	Magnesium	*6010C	1100		mg/kg d
110128-04	GW-4 (5-7)	Manganese	*6010C	410		mg/kg d
5110128-04	GW-4 (5-7)	Nickel	*6010C	8.8		mg/kg d
5110128-04	GW-4 (5-7)	Potassium	*6010C	770		mg/kg d
5110128-04	GW-4 (5-7)	Sodium	*6010C	70		mg/kg d
5110128-04	GW-4 (5-7)	Vanadium	*6010C	120		mg/kg d
5110128-04	GW-4 (5-7)	Zinc	*6010C	36		mg/kg d
5110128-05	GW-3 (0-1)	1-Methylnaphthalene	8270D	0.34	J	mg/kg d
5110128-05	GW-3 (0-1)	2-Methylnaphthalene	8270D	0.42		mg/kg d
5110128-05	GW-3 (0-1)	Acenaphthene	8270D	2.5		mg/kg d
5110128-05	GW-3 (0-1)	Acenaphthylene	8270D	0.13	J	mg/kg d
5110128-05	GW-3 (0-1)	Anthracene	8270D	4.4		mg/kg d
5110128-05	GW-3 (0-1)	Benzo(a)anthracene	8270D	12		mg/kg d
5110128-05	GW-3 (0-1)	Benzo(a)pyrene	8270D	11		mg/kg d
5110128-05	GW-3 (0-1)	Benzo(b)fluoranthene	8270D	11		mg/kg d
5110128-05	GW-3 (0-1)	Benzo(g,h,i)perylene	8270D	6.8		mg/kg d
5110128-05	GW-3 (0-1)	-	8270D	4.2		mg/kg d
5110128-05	GW-3 (0-1)	Benzo(k)fluoranthene	8270D	9.8		mg/kg d
5110128-05		Chrysene	8270D	1.5		mg/kg c
5110128-05	GW-3 (0-1) GW-3 (0-1)	Dibenzo(a,h)anthracene	8270D	0.80		mg/kg c
	, ,	Dibenzofuran		21		mg/kg c
5110128-05	GW-3 (0-1)	Fluoranthene	8270D	21 1,5		mg/kg c
5110128-05	GW-3 (0-1)	Fluorene	8270D			
5110128-05	GW-3 (0-1)	Indeno(1,2,3-cd)pyrene	8270D	7.3		mg/kg

Summary of Detections

11/19/2015

Prism Work Order: 5110128

Prism ID	Client ID	Parameter	Method	Result		Units
5110128-05	GW-3 (0-1)	Naphthalene	8270D	0.51		mg/kg dry
5110128-05	GW-3 (0-1)	Phenanthrene	8270D	14		mg/kg dry
5110128-05	GW-3 (0-1)	Pyrene	8270D	18		mg/kg dry
5110128-06	GW-3 (4-6)	2-Methylnaphthalene	8270D	0.14	J	mg/kg dry
5110128-06	GW-3 (4-6)	Acenaphthene	8270D	0.51		mg/kg dry
5110128-06	GW-3 (4-6)	Anthracene	8270D	0.83		mg/kg dry
5110128-06	GW-3 (4-6)	Benzo(a)anthracene	8270D	1.6		mg/kg dry
5110128-06	GW-3 (4-6)	Benzo(a)pyrene	8270D	1.4		mg/kg đry
5110128-06	GW-3 (4-6)	Benzo(b)fluoranthene	8270D	0.25	J	mg/kg dry
5110128-06	GW-3 (4-6)	Benzo(g,h,i)perylene	8270D	0.76		mg/kg dry
5110128-06	GW-3 (4-6)	Benzo(k)fluoranthene	8270D	0.27	J	mg/kg dry
5110128-06	GW-3 (4-6)	Chrysene	8270D	1.4		mg/kg dry
5110128-06	GW-3 (4-6)	Dibenzo(a,h)anthracene	8270D	0.19	j	mg/kg dry
5110128-06	GW-3 (4-6)	Dibenzofuran	8270D	0.24	J	mg/kg dry
5110128-06	GW-3 (4-6)	Fluoranthene	8270D	3.5		mg/kg dry
5110128-06	GW-3 (4-6)	Fluorene	8270D	0.33	J	mg/kg dry
5110128-06	GW-3 (4-6)	Indeno(1,2,3-cd)pyrene	8270D	0.84		mg/kg dry
5110128-06	GW-3 (4-6)	Naphthalene	8270D	0.18	J	mg/kg dry
5110128-06	GW-3 (4-6)	Phenanthrene	8270D	3.1		mg/kg dry
5110128-06	GW-3 (4-6)	Pyrene	8270D	2.8		mg/kg dry
5110128-06	GW-3 (4-6)	Naphthalene	8260B	0.0039	J	mg/kg dry
5110128-07	GW-9 (0-1)	Acenaphthylene	8270D	0.13	J	mg/kg dry
5110128-07	GW-9 (0-1)	Anthracene	8270D	0.16	J	mg/kg dry
5110128-07	GW-9 (0-1)	Benzo(a)anthracene	8270D	0.41	J	mg/kg dry
5110128-07	GW-9 (0-1)	Benzo(a)pyrene	8270D	0.32	J	mg/kg dry
5110128-07	GW-9 (0-1)	Benzo(b)fluoranthene	8270D	0.38	J	mg/kg dry
5110128-07	GW-9 (0-1)	Benzo(g,h,i)perylene	8270D	0.16	J	mg/kg dry
5110128-07	GW-9 (0-1)	Benzo(k)fluoranthene	8270D	0.16	J	mg/kg dry
5110128-07	GW-9 (0-1)	Chrysene	8270D	0.44		mg/kg dry
5110128-07	GW-9 (0-1)	Fluoranthene	8270D	0.43		mg/kg dry
5110128-07	GW-9 (0-1)	Indeno(1,2,3-cd)pyrene	8270D	0.16	J	mg/kg dry
5110128-07	GW-9 (0-1)	Phenanthrene	8270D	0.31	J	mg/kg dry
5110128-07	GW-9 (0-1)	Pyrene	8270D	0.62		mg/kg dry
5110128-07	GW-9 (0-1)	Acetone	8260B	0.072		mg/kg dry
5110128-08	GW-9 (4-6)	Acetone	8260B	0.11		mg/kg dry

11/19/2015

Cardno - Charlotte Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-1 (0-1) Prism Sample ID: 5110128-01 Prism Work Order: 5110128

Time Collected: 11/04/15 09:30 Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis A Date/Time	Analyst	Batch ID
Gasoline Range Organics by G	C/FID								
Gasoline Range Organics	BRL	mg/kg dry	6.4	1.3	50	*8015C	11/10/15 2:19	ANG	P5K0162
			Surrogate	******		Recove	егу	Control L	imits.
			a,a,a-Trifluo	rotoluene		86	%	50-137	
General Chemistry Parameters									
% Solids	72.0	% by Weight	0.100	0.100	1	*SM2540 G	11/9/15 14:45	ARC	P5K0169
Volatile Organic Compounds by	y GC/MS								
1,1,1,2-Tetrachloroethane	BRL	mg/kg dry	0.0058	0.00048	1	8260B	11/6/15 16:42	MW&C	(P5K0076
1,1,1-Trichloroethane	BRL	mg/kg dry	0.0058	0.00028	1	8260B	11/6/15 16:42	MW&C	C P5K0076
1,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0058	0.00039	1	8260B	11/6/15 16:42	MW&C	C P5K0076
1,1,2-Trichloroethane	BRL	mg/kg dry	0.0058	0.00052	1	8260B	11/6/15 16:42	MW&C	C P5K0076
1,1-Dichloroethane	BRL.	mg/kg dry	0.0058	0.00016	1	8260B	11/6/15 16:42	MW&C	C P5K0076
1,1-Dichloroethylene	BRL	mg/kg dry	0.0058	0.00026	1	8260B	11/6/15 16:42	MW&C	C P5K0076
1,1-Dichloropropylene	BRL	mg/kg dry	0.0058	0.00032	1	8260B	11/6/15 16:42	MW&C	C P5K0076
1,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0058	0.00033	1	8260B	11/6/15 16:42	MW&C	C P5K0076
1,2,3-Trichloropropane	BRL	mg/kg dry	0.0058	0.00074	1	8260B	11/6/15 16:42	MW&C	C P5K0076
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0058	0.00043	1	8260B	11/6/15 16:42	MW&C	C P5K0076
1,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0058	0.00044	1	8260B	11/6/15 16:42	MW&C	C P5K0076
1,2-Dibromoethane	BRL	mg/kg dry	0.0058	0.00023	1	8260B	11/6/15 16:42	MW&C	C P5K0076
1,2-Dichlorobenzene	BRL	mg/kg dry	0.0058	0.00027	1	8260B	11/6/15 16:42	MW&C	C P5K0076
1,2-Dichloroethane	BRL	mg/kg dry	0.0058	0.00035	1	8260B	11/6/15 16:42	MW&C	C P5K0076
1,2-Dichloropropane	BRL	mg/kg dry	0.0058	0.00036	1	8260B	11/6/15 16:42	MW&C	C P5K0076
1,3,5-Trimethylbenzene	BRL	mg/kg dry	0.0058	0.00044	1	8260B	11/6/15 16:42	MW&C	C P5K0076
1,3-Dichlorobenzene	BRL	mg/kg dry	0.0058	0.00039	1	8260B	11/6/15 16:42	MW&C	C P5K0076
1,3-Dichloropropane	BRL	mg/kg dry	0.0058	0.00029	1	8260B	11/6/15 16:42	MW&C	C P5K0076
1,4-Dichlorobenzene	BRL	mg/kg dry	0.0058	0.00023	1	8260B	11/6/15 16:42	MW&C	C P5K0076
2,2-Dichloropropane	BRL	mg/kg dry	0.0058	0.00028	1	8260B	11/6/15 16:42	MW&C	C P5K0076
2-Chlorotoluene	BRL	mg/kg dry	0.0058	0.00030		8260B	11/6/15 16:42	MW&0	C P5K0076
4-Chlorotoluene	BRL	mg/kg dry	0.0058	0.00035	· 1	8260B	11/6/15 16:42	MW&C	C P5K0076
4-isopropyltoluene	BRL.	mg/kg dry	0.0058	0.00028	1	8260B	11/6/15 16:42		C(P5K0076
Acetone	0.092	mg/kg dry	0.058	0.0014	1	8260B	11/6/15 16:42	MW&C	C(P5K0076
Benzene	BRL	mg/kg dry	0.0035	0.00034		8260B	11/6/15 16:42	MW&0	C P5K0076
Bromobenzene	BRL	mg/kg dry	0.0058	0.00049		8260B	11/6/15 16:42		_ C(P5K0076
Bromochloromethane	BRL	mg/kg dry	0.0058	0.00032		8260B	11/6/15 16:42		C(P5K0076
Bromodichloromethane	BRL	mg/kg dry	0.0058	0.00032		8260B	11/6/15 16:42		C(P5K0076
Bromoform	BRL	mg/kg dry	0.0058	0.00066		8260B	11/6/15 16:42		C(P5K0076
Bromomethane	BRL	mg/kg dry	0.012	0.00072		8260B	11/6/15 16:42		C(P5K0076
Carbon Tetrachloride	BRL	mg/kg dry	0.0058	0.00072		8260B	11/6/15 16:42		C(P5K0076
Chlorobenzene	BRL	mg/kg dry	0.0058	0.00029		8260B	11/6/15 16:42		C(P5K0076
Chloroethane	BRL	mg/kg dry	0.012	0.00031		8260B	11/6/15 16:42		C(P5K0076
Chloroform	BRL	mg/kg dry	0.012	0.00049		8260B	11/6/15 16:42		C(P5K0076
Chloromethane	BRL	mg/kg dry	0.0058	0.00042		8260B	11/6/15 16:42		C(P5K0076

Cardno - Charlotte Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite Sample Matrix: Solid

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Client Sample ID: GW-1 (0-1) Prism Sample ID: 5110128-01 Prism Work Order: 5110128

Time Collected: 11/04/15 09:30 Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
cis-1,2-Dichloroethylene	BRL	mg/kg dry	0.0058	0.00025	1	8260B	11/6/15 16:42	MW&C(P5K0076
cis-1,3-Dichloropropylene	BRL	mg/kg dry	0.0058	0.00020	1	8260B	11/6/15 16:42	MW&C(P5K0076
Dibromochloromethane	BRL	mg/kg dry	0.0058	0.00024	1	8260B	11/6/15 16:42	MW&C0	P5K0076
Dichlorodifluoromethane	BRL CVL	mg/kg dry	0.0058	0.00026	1	8260B	11/6/15 16:42	MW&C(P5K0076
Ethylbenzene	BRL	mg/kg dry	0.0058	0.00022	1	8260B	11/6/15 16:42	MW&C(P5K0076
Isopropyl Ether	BRL	mg/kg dry	0.0058	0.00024	1	8260B	11/6/15 16:42	MW&C	P5K0076
sopropylbenzene (Cumene)	BRL	mg/kg dry	0.0058	0.00034	1	8260B	11/6/15 16:42	MW&C(P5K0076
m,p-Xylenes	BRL	mg/kg dry	0.012	0.00054	1	8260B	11/6/15 16:42	MW&C	P5K0076
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.058	0.00053	1	8260B	11/6/15 16:42	MW&C(P5K0076
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.12	0.00053	1	8260B	11/6/15 16:42	MW&C(P5K0076
Methyl Isobutyl Ketone	BRL	mg/kg dry	0.058	0.00050	1	8260B	11/6/15 16:42	MW&C(P5K0076
Methylene Chloride	BRL	mg/kg dry	0.0058	0.00033	1	8260B	11/6/15 16:42	MW&C0	P5K0076
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.012	0.00019	1	8260B	11/6/15 16:42	MW&C(P5K0076
Naphthalene	BRL	mg/kg dry	0.012	0.00018	1	8260B	11/6/15 16:42	MW&C(P5K0076
n-Butylbenzene	BRL	mg/kg dry	0.0058	0.00030	1	8260B	11/6/15 16:42	MW&C(P5K0076
n-Propylbenzene	BRL	mg/kg dry	0.0058	0.00035	1	8260B	11/6/15 16:42	MW&C(P5K0076
o-Xylene	BRL	mg/kg dry	0.0058	0.00024	1	8260B	11/6/15 16:42	MW&C0	P5K0076
sec-Butylbenzene	BRL	mg/kg dry	0.0058	0.00028	1	8260B	11/6/15 16:42	MW&C0	P5K0076
Styrene	BRL	mg/kg dry	0.0058	0.00035	1	8260B	11/6/15 16:42	MW&C0	P5K0076
tert-Butylbenzene	BRL	mg/kg dry	0.0058	0.00020	1	8260B	11/6/15 16:42	MW&CC	P5K0076
Tetrachloroethylene	BRL	mg/kg dry	0.0058	0.00028	1	8260B	11/6/15 16:42	MW&C	P5K0076
Toluene	BRL	mg/kg dry	0.0058	0.00033	1	8260B	11/6/15 16:42	MW&CC	P5K0076
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0058	0.00035	1	8260B	11/6/15 16:42	MW&C(P5K0076
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0058	0.00031	1	8260B	11/6/15 16:42		
Trichloroethylene	BRL	mg/kg dry	0.0058	0.00038	1	8260B	11/6/15 16:42		
Trichlorofluoromethane	BRL	mg/kg dry	0.0058	0.00038	1	8260B	11/6/15 16:42	MW&C(P5K0076
Vinyl acetate	BRL	mg/kg dry	0.029	0.00080	1	8260B	11/6/15 16:42		
Vinyl chloride	BRL	mg/kg dry	0.0058	0.00028	1	8260B	11/6/15 16:42	MW&C0	P5K0076
Xylenes, total	BRL.	mg/kg dry	0.017	0.0011	1	8260B	11/6/15 16:42	MW&C(P5K0076
			Surrogate			Recov	very	Control Lin	nits

11/19/2015

Cardno - Charlotte Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-1 (2-4) Prism Sample ID: 5110128-02 Prism Work Order: 5110128

Time Collected: 11/04/15 09:40 Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis / Date/Time	Analyst	Batch ID
Gasoline Range Organics by GO	FID								
Gasoline Range Organics	BRL	mg/kg dry	7.4	1.5	50	*8015C	11/10/15 2:47	' ANG	P5K0162
			Surrogate			Recov	ery	Control L	imits
			a,a,a-Trifluc	rotoluene		86	%	50-137	
General Chemistry Parameters									
% Solids	67.0	% by Weight	0.100	0.100	1	*SM2540 G	11/9/15 14:45	ARC	P5K0169
Volatile Organic Compounds by	GC/MS								
1,1,1,2-Tetrachloroethane	BRL	mg/kg dry	0.0056	0.00046	1	8260B	11/6/15 17:10	MW&C	(P5K0076
1,1,1-Trichloroethane	BRL	mg/kg dry	0.0056	0.00027	1	8260B	11/6/15 17:10	MW&C	C P5K0076
1,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0056	0.00038	1	8260B	11/6/15 17:10	MW&C	(P5K0076
1,1,2-Trichloroethane	BRL	mg/kg dry	0.0056	0.00050	1	8260B	11/6/15 17:10	MW&C	;(P5K0076
1,1-Dichloroethane	BRL	mg/kg dry	0.0056	0.00016	1	8260B	11/6/15 17:10	MW&C	(P5K0076
1,1-Dichloroethylene	BRL	mg/kg dry	0.0056	0.00025	1	8260B	11/6/15 17:10	MW&C	C P5K0076
1,1-Dichloropropylene	BRL	mg/kg dry	0.0056	0,00031	1	8260B	11/6/15 17:10	MW&C	(P5K0076
1,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0056	0.00032	1	8260B	11/6/15 17:10	MW&C	C P5K0076
1,2,3-Trichloropropane	BRL	mg/kg dry	0.0056	0.00072	1	8260B	11/6/15 17:10	MW&C	C P5K0076
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0056	0.00042	1	8260B	11/6/15 17:10	MW&C	C P5K0076
1,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0056	0.00043	1	8260B	11/6/15 17:10	MW&C	C P5K0076
1,2-Dibromoethane	BRL	mg/kg dry	0.0056	0.00023	1	8260B	11/6/15 17:10	MW&C	C P5K0076
1,2-Dichlorobenzene	BRL	mg/kg dry	0.0056	0.00026	1	8260B	11/6/15 17:10	MW&C	C P5K0076
1,2-Dichloroethane	BRL	mg/kg dry	0.0056	0.00033	1	8260B	11/6/15 17:10	MW&C	C P5K0076
1,2-Dichloropropane	BRL	mg/kg dry	0.0056	0.00035	1	8260B	11/6/15 17:10	MW&C	C P5K0076
1,3,5-Trimethylbenzene	BRL.	mg/kg dry	0.0056	0.00042	1	8260B	11/6/15 17:10	MW&C	C P5K0076
1,3-Dichlorobenzene	BRL	mg/kg dry	0.0056	0.00037	1	8260B	11/6/15 17:10	MW&C	C P5K0076
1,3-Dichloropropane	BRL	mg/kg dry	0.0056	0.00028	1	8260B	11/6/15 17:10	MW&C	C P5K0076
1,4-Dichlorobenzene	BRL	mg/kg dry	0.0056	0.00022	1	8260B	11/6/15 17:10	MW&C	C P5K0076
2,2-Dichloropropane	BRL	mg/kg dry	0.0056	0.00027	1	8260B	11/6/15 17:10	MW&C	C P5K0076
2-Chlorotoluene	BRL	mg/kg dry	0.0056	0.00029	1	8260B	11/6/15 17:10) MW&0	C P5K0076
4-Chlorotoluene	BRL	mg/kg dry	0.0056	0.00033	1	8260B	11/6/15 17:10	MW&C	C P5K0076
4-Isopropyltoluene	BRL	mg/kg dry	0.0056	0.00027	1	8260B	11/6/15 17:10) MW&0	C P5K0076
Acetone	BRL	mg/kg dry	0.056	0.0014	1	8260B	11/6/15 17:10		C P5K0076
Benzene	BRL	mg/kg dry	0.0034	0,00033	1	8260B	11/6/15 17:10		C P5K0076
Bromobenzene	BRL	mg/kg dry	0.0056	0.00047		8260B	11/6/15 17:10) MW&0	C P5K0076
Bromochloromethane	BRL	mg/kg dry	0.0056	0.00031		8260B	11/6/15 17:10		C P5K0076
Bromodichloromethane	BRL	mg/kg dry	0.0056	0.00031		8260B	11/6/15 17:10		C P5K007
Bromoform	BRL	mg/kg dry	0.0056	0.00064		8260B	11/6/15 17:10		C P5K007
Bromomethane	BRL	mg/kg dry	0.011	0.00069		8260B	11/6/15 17:10		C P5K007
Carbon Tetrachloride	BRL	mg/kg dry	0.0056	0.00028		8260B	11/6/15 17:10		C P5K007
Chlorobenzene	BRL	mg/kg dry	0.0056	0.00020		8260B	11/6/15 17:10		C P5K007
Chloroethane	BRL	mg/kg dry	0.011	0.00047		8260B	11/6/15 17:10		C P5K007
Chloroform	BRL	mg/kg dry	0.0056	0.00047		8260B	11/6/15 17:10		C P5K007
Chloromethane	BRL	inging dry	0.0000	0.00041		02000	1110/13 17.11		C P5K007

Cardno - Charlotte
Attn: Christine Schaefer
7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Client Sample ID: GW-1 (2-4)
Prism Sample ID: 5110128-02
Prism Work Order: 5110128
Time Collected: 11/04/15 09:40
Time Submitted: 11/05/15 16:40

Sample Matrix: Solid

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
cis-1,2-Dichloroethylene	BRL	mg/kg dry	0.0056	0.00024	1	8260B	11/6/15 17:10	MW&C(P5K0076
cis-1,3-Dichloropropylene	BRL	mg/kg dry	0.0056	0.00019	1	8260B	11/6/15 17:10	MW&C	P5K0076
Dibromochloromethane	BRL	mg/kg dry	0.0056	0.00023	1	8260B	11/6/15 17:10	MW&C	P5K0076
Dichlorodifluoromethane	BRL CVL	mg/kg dry	0.0056	0.00026	1	8260B	11/6/15 17:10	MW&C(P5K0076
Ethylbenzene	BRL	mg/kg dry	0.0056	0.00022	1	8260B	11/6/15 17:10	MW&C	P5K0076
Isopropyl Ether	BRL	mg/kg dry	0.0056	0.00023	1	8260B	11/6/15 17:10	MW&C	P5K0076
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0056	0.00033	1	8260B	11/6/15 17:10	MW&C	P5K0076
m,p-Xylenes	BRL	mg/kg dry	0.011	0.00052	1	8260B	11/6/15 17:10	MW&C	P5K0076
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.056	0.00051	1	8260B	11/6/15 17:10	MW&C	P5K0076
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.11	0.00051	1	8260B	11/6/15 17:10	MW&C	P5K0076
Methyl Isobutyl Ketone	BRL	mg/kg dry	0.056	0.00048	1	8260B	11/6/15 17:10	MW&C	P5K0076
Methylene Chloride	BRL	mg/kg dry	0.0056	0.00032	1	8260B	11/6/15 17:10	MW&C	P5K0076
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.011	0.00018	1	8260B	11/6/15 17:10	MW&C	P5K0076
Naphthalene	BRL	mg/kg dry	0.011	0.00018	1	8260B	11/6/15 17:10	MW&C	P5K0076
n-Butylbenzene	BRL	mg/kg dry	0.0056	0.00029	1	8260B	11/6/15 17:10	MW&C	P5K0076
n-Propylbenzene	BRL	mg/kg dry	0.0056	0.00033	1	8260B	11/6/15 17:10	MW&C	P5K0076
o-Xylene	BRL	mg/kg dry	0.0056	0.00023	1	8260B	11/6/15 17:10	MW&C	P5K0076
sec-Butylbenzene	BRL	mg/kg dry	0.0056	0.00027	1	8260B	11/6/15 17:10	MW&C0	P5K0076
Styrene	BRL	mg/kg dry	0.0056	0.00034	1	8260B	11/6/15 17:10	MW&C	P5K0076
ert-Butylbenzene	BRL	mg/kg dry	0.0056	0.00019	1	8260B	11/6/15 17:10	MW&C	P5K0076
Tetrachioroethylene	BRL	mg/kg dry	0.0056	0.00027	1	8260B	11/6/15 17:10	MW&C	P5K0076
Toluene	BRL	mg/kg dry	0.0056	0.00032	1	8260B	11/6/15 17:10	MW&C	P5K0076
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0056	0.00034	1	8260B	11/6/15 17:10	MW&C	P5K0076
rans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0056	0.00030	1	8260B	11/6/15 17:10	MW&C	P5K0076
Trichloroethylene	BRL	mg/kg dry	0.0056	0.00036	1	8260B	11/6/15 17:10	MW&C	P5K0076
Trichlorofluoromethane	BRL	mg/kg dry	0.0056	0.00036	1	8260B	11/6/15 17:10	MW&C	P5K0076
vinyl acetate	BRL	mg/kg dry	0.028	0.00077	1	8260B	11/6/15 17:10	MW&C	P5K0076
Vinyl chloride	BRL	mg/kg dry	0.0056	0.00027	1	8260B	11/6/15 17:10	MW&C	P5K0076
Kylenes, total	BRL	mg/kg dry	0.017	0.0011	1	8260B	11/6/15 17:10	MW&C(P5K0076

Surrogate	Recovery	Control Limits
4-Bromofluorobenzene	100 %	70-130
Dibromofluoromethane	102 %	84-123
Toluene-d8	100 %	76-129

11/19/2015

Cardno - Charlotte Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-4 (0-1) Prism Sample ID: 5110128-03 Prism Work Order: 5110128

Time Collected: 11/04/15 10:45 Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parameters									
% Solids	77.8	% by Weight	0.100	0.100	1	*SM2540 G	11/9/15 14:45	ARC	P5K0169
Polychlorinated Biphenyls (PC	Bs) by GC/ECD								
Aroclor 1016	BRL	mg/kg dry	0.19	0.018	1	8082A	11/13/15 1:54	JMC	P5K0247
Aroclor 1221	BRL	mg/kg dry	0.39	0.15	1	8082A	11/13/15 1:54	JMC	P5K0247
Aroclor 1232	BRL	mg/kg dry	0.39	0.050	1	8082A	11/13/15 1:54	JMC	P5K0247
Aroclor 1242	BRL	mg/kg dry	0.19	0.051	1	8082A	11/13/15 1:54	JMC	P5K0247
Aroclor 1248	BRL	mg/kg dry	0.19	0.039	1	8082A	11/13/15 1:54	JMC	P5K0247
Aroclor 1254	BRL	mg/kg dry	0.19	0.048	1	8082A	11/13/15 1:54	JMC	P5K0247
Aroclor 1260	BRL	mg/kg dry	0.19	0.027	1	8082A	11/13/15 1:5	JMC	P5K0247
			Surrogate			Recov	rery	Control I	Limits
			Tetrachloro-	m-xylene		64	%	36-182	
			Decachlorol				%	34-182	
Semivolatile Organic Compour	nds by GC/MS								
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.42	0.066	1	8270D	11/10/15 19:4	3 JMV	P5K015
1,2-Dichlorobenzene	BRL.	mg/kg dry	0.42	0.064	1	8270D	11/10/15 19:4		P5K015
1,3-Dichlorobenzene	BRL	mg/kg dry	0.42	0.060	· 1	8270D	11/10/15 19:4		P5K015
1,4-Dichlorobenzene	BRL	mg/kg dry	0.42	0.062	1	8270D	11/10/15 19:4		P5K015
1-Methylnaphthalene	0.12 J	mg/kg dry	0.42	0.082	1	8270D	11/10/15 19:4		P5K015
2,4,6-Trichlorophenol	BRL	mg/kg dry	0.42	0.079	1	8270D	11/10/15 19:4		P5K015
2,4-Dichlorophenol	BRL	mg/kg dry	0.42	0.082	1	8270D	11/10/15 19:4		P5K015
2,4-Dimethylphenol	BRL	mg/kg dry	0.42	0.065	1	8270D	11/10/15 19:4		P5K015
2,4-Dinitrophenol	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 19:4		P5K015
2,4-Dinitrotoluene	BRL	mg/kg dry	0.42	0.051	1	8270D	11/10/15 19:4		P5K015
2,6-Dinitrotoluene	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 19:-		P5K015
2-Chloronaphthalene	BRL	mg/kg dry	0.42	0.061	1	8270D	11/10/15 19:4		P5K015
2-Chlorophenol	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 19:-		P5K015
2-Methylnaphthalene	0.15 J	mg/kg dry	0.42	0.068	1	8270D	11/10/15 19:4		P5K015
2-Methylphenol	BRL	mg/kg dry	0.42	0.054	1	8270D	11/10/15 19:		P5K015
2-Nitrophenol	BRL	mg/kg dry	0.42	0.034	1	8270D	11/10/15 19:		P5K015
3,3'-Dichlorobenzidine	BRL	mg/kg dry		0.077	1	8270D 8270D	11/10/15 19:		P5K015
3/4-Methylphenol	BRL	mg/kg dry	0.42	0.052		8270D 8270D	11/10/15 19:		P5K015
4,6-Dinitro-2-methylphenol	BRL	-	0.42				11/10/15 19:		P5K015
		mg/kg dry	0.42	0.064		8270D			P5K015
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	BRL BRL	mg/kg dry	0.42	0.073		8270D	11/10/15 19: 11/10/15 19:		P5K015
4-Chloroaniline	BRL	mg/kg dry	0.42	0.059		8270D	11/10/15 19:		P5K015
4-Chlorophenyl phenyl ether	BRL	mg/kg dry	0.42	0.051		8270D 8270D	11/10/15 19:		P5K015
4-Nitrophenol	BRL	mg/kg dry	0.42	0.055		8270D 8270D	11/10/15 19:		P5K015
·		mg/kg dry	0.42	0.065					P5K01
Acenaphthene	0.22 J	mg/kg dry	0.42	0.058		8270D	11/10/15 19:		P5K018
Acenaphthylene	0.87	mg/kg dry	0.42	0.061		8270D	11/10/15 19:		
Anthracene	1.4	mg/kg dry	0.42	0.068	1	8270D	11/10/15 19:	13 JMV	P5K015

Cardno - Charlotte Attn: Christine Schaefer 7606 Whitehall Executive Center Drive, Suite Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-4 (0-1) Prism Sample ID: 5110128-03 Prism Work Order: 5110128 Time Collected: 11/04/15 10:45 Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis A Date/Time	nalyst	Batch ID
Azobenzene	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 19:43	JM∨	P5K0151
Benzo(a)anthracene	2.3	mg/kg dry	0.42	0.055	1	8270D	11/10/15 19:43	JMV	P5K0151
Benzo(a)pyrene	1.7	mg/kg dry	0.42	0.046	1	8270D	11/10/15 19:43	JMV	P5K0151
Benzo(b)fluoranthene	2.2	mg/kg dry	0.42	0.049	1	8270D	11/10/15 19:43	JMV	P5K0151
Benzo(g,h,i)perylene	0.85	mg/kg dry	0.42	0.046	1	8270D	11/10/15 19:43	JMV	P6K0151
Benzo(k)fluoranthene	0.92	mg/kg dry	0.42	0.056	1	8270D	11/10/15 19:43	JMV	P5K0151
Benzoic Acid	BRL	mg/kg dry	0.42	0.036	1	8270D	11/10/15 19:43	JMV	P5K0151
Benzyl alcohol	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 19:43	JMV	P5K0151
bis(2-Chloroethoxy)methane	BRL	mg/kg dry	0.42	0.074	1	8270D	11/10/15 19:43	JMV.	P5K0151
Bis(2-Chloroethyl)ether	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 19:43	JMV	P5K0151
Bis(2-chloroisopropyl)ether	BRL	mg/kg dry	0.42	0.072	1	8270D	11/10/15 19:43	JMV	P5K0151
Bis(2-Ethylhexyl)phthalate	BRL	mg/kg dry	0.42	0.063	1	8270D	11/10/15 19:43	JMV	P5K0151
Butyl benzyl phthalate	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 19:43	JMV	P5K0151
Chrysene	1.8	mg/kg dry	0.42	0.053	1	8270D	11/10/15 19:43	JMV	P5K0151
Dibenzo(a,h)anthracene	0.24 J	mg/kg dry	0.42	0.052	1	8270D	11/10/15 19:43	JMV	P5K0151
Dibenzofuran	0.42	mg/kg dry	0.42	0.064	1	8270D	11/10/15 19:43	JM€V	P5K0151
Diethyl phthalate	BRL	mg/kg dry	0.42	0.058	1	8270D	11/10/15 19:43	JMV	P5K0151
Dimethyl phthalate	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 19:43	JM∨	P5K0151
Di-n-butyl phthalate	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 19:43	JMV	P5K0151
Di-n-octyl phthalate	BRL	mg/kg dry	0.42	0.052	1	8270D	11/10/15 19:43	JMV	P5K0151
Fluoranthene	4.6	mg/kg dry	0.42	0.054	1	8270D	11/10/15 19:43	JMV	P5K0151
Fluorene	0.36 J	mg/kg dry	0.42	0.061	1	8270D	11/10/15 19:43	JMV	P5K0151
Hexachlorobenzene	BRL	mg/kg dry	0.42	0.067	1	8270D	11/10/15 19:43	JMV	P5K0151
Hexachlorobutadiene	BRL	mg/kg dry	0.42	0.076	1 .	8270D	11/10/15 19:43	VML	P5K0151
Hexachlorocyclopentadiene	BRL	mg/kg dry	0.42	0.076	1	8270D	11/10/15 19:43	JMV	P5K0151
Hexachloroethane	BRL	mg/kg dry	0.42	0.071	1	8270D	11/10/15 19:43	JMV	P5K0151
Indeno(1,2,3-cd)pyrene	0.92	mg/kg dry	0.42	0.049	1	8270D	11/10/15 19:43	JMV	P5K0151
Isophorone	BRL	mg/kg dry	0.42	0.057	1	8270D	11/10/15 19:43	JM∨	P5K0151
Naphthalene	0.18 J	mg/kg dry	0.42	0.068	1	8270D	11/10/15 19:43	JMV	P5K0151
Nitrobenzene	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 19:43	JMV	P5K0151
N-Nitroso-di-n-propylamine	BRL	mg/kg dry	0.42	0.067	1	8270D	11/10/15 19:43	JMV	P5K0151
N-Nitrosodiphenylamine	BRL	mg/kg dry	0.42	0.064	. 1	8270D	11/10/15 19:43	JMV	P5K0151
Pentachlorophenol	BRL	mg/kg dry	0.42	0.050	1	8270D	11/10/15 19.43	JMV	P5K0151
Phenanthrene	4.5	mg/kg dry	0.42	0.055	1	8270D	11/10/15 19:43	JMV	P5K0151
Phenol	BRL	mg/kg dry	0,42	0.063	1	8270D	11/10/15 19:43	JMV	P5K0151
Pyrene	4.0	mg/kg dry	0.42	0.056	· 1	8270D	11/10/15 19:43	JMV	P5K0151
•			Surrogate			Recov	very	Control	Limits
			2,4,6-Tribro	mophenol		75	5 %	39-132	
			2-Fluorobiphenyl			87 %		44-115	
			2-Fluorophe	enol		69	9 %	35-115	
			Nitrobenzer			74	4 %	37-122	
			Phenol-d5			75	5 %	34-121	

Cardno - Charlotte Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Client Sample ID: GW-4 (0-1) Prism Sample ID: 5110128-03 Prism Work Order: 5110128 Sample Matrix: Solid

Time Collected: 11/04/15 10:45 Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis A Date/Time	nalyst	Batch ID
			Terphenyl-d	14	''	88	3 %	54-127	
Total Metals									
Aluminum	20000	mg/kg dry	660	89	200	*6010C	11/12/15 17:49	BGM	P5K014
flercury	0.084	mg/kg dry	0.024	0.0016	1	*7471B	11/9/15 12:24	JAB	P5K015
Antimony	BRL	mg/kg dry	0.33	0.052	1	*6010C	11/9/15 23:47	BGM	P5K014
Arsenic	6.2	mg/kg dry	0.33	0.073	1	*6010C	11/9/15 23:47	BGM	P5K014
Barium	18	mg/kg dry	0.66	0.35	1	*6010C	11/9/15 23:47	BGM	P5K014
Beryllium	BRL	mg/kg dry	0.33	0.011	1	*6010C	11/9/15 23:47	BGM	P5K014
Cadmium	BRL	mg/kg dry	0.33	0.0069	1	*6010C	11/9/15 23:47	всм	P5K014
Calcium	290	mg/kg dry	13	0.85	1	*6010C	11/9/15 23:47	BGM	P5K01
Chromium	22	mg/kg dry	0.33	0.045	1	*6010C	11/9/15 23:47	BGM	P5K014
Cobalt	0.97	mg/kg dry	0.33	0.010	1	*6010C	11/9/15 23:47	BGM	P5K01
Copper	1,1	mg/kg dry	0.66	0.11	1	*6010C	11/9/15 23:47	BGM	P5K01
ron	17000	mg/kg dry	1300	380	200	*6010C	11/12/15 17:49		P5K01
Lead	9.3	mg/kg dry	0.33	0.034	1	*6010C	11/9/15 23:47	BGM	P5K01
Magnesium	680	mg/kg dry	3.3	0.36	1	*6010C	11/9/15 23:47	BGM	P5K01
Manganese	9.1	mg/kg dry		0.060	1	*6010C	11/9/15 23:47	BGM	P5K01
Nickel	3.3		0.33						P5K01
Potassium		mg/kg dry	0.66	0.061	1	*6010C	11/9/15 23:47	BGM	P5K01
Selenium	440 BRL	mg/kg dry	16	1.6	1	*6010C	11/9/15 23:47	BGM	P5K01
Silver	. BRL	mg/kg dry	0.66	0.048	1	*6010C	11/9/15 23:47	BGM BGM	P5K01
Sodium	. 53	mg/kg dry	0.33	0.0054	1	*6010C	11/9/15 23:47		P5K01
Thallium	BRL.	mg/kg dry	20	0.57	1	*6010C	11/9/15 23:47	BGM BGM	P5K01
Vanadium		mg/kg dry	0.66	0.047	1	*6010C	11/9/15 23:47		P5K01
Zinc	35	mg/kg dry	0.33	0.011	1	*6010C	11/9/15 23:47	BGM	P5K01
	7.7	mg/kg dry	3.3	0.040	1	*6010C	11/9/15 23:47	BGM	FORUI
Volatile Organic Compounds	<u>*</u>								
1,1,1,2-Tetrachloroethane	BRL	mg/kg dry	0.0054	0.00044	1	8260B	11/6/15 17:38		(P5K00
1,1,1-Trichloroethane	BRL	mg/kg dry	0.0054	0.00026	1	8260B	11/6/15 17:38		(P5K00
1,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0054	0.00036	1	8260B	11/6/15 17:38		C P5K00
1,1,2-Trichloroethane	BRL	mg/kg dry	0.0054	0.00048	1	8260B	11/6/15 17:38		C P5K00
1,1-Dichloroethane	BRL	mg/kg dry	0.0054	0.00015	1	8260B	11/6/15 17:38		C P5K00
1,1-Dichloroethylene	BRL	mg/kg dry	0.0054	0.00024	1	8260B	11/6/15 17:38		C P5K00
1,1-Dichloropropylene	BRL	mg/kg dry	0.0054	0.00030	1	8260B	11/6/15 17:38		C P5K00
1,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0054	0.00031	1	8260B	11/6/15 17:38		C P5K00
1,2,3-Trichloropropane	BRL	mg/kg dry	0.0054	0.00069	1	8260B	11/6/15 17:38		C P5K00
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0054	0.00040	1	8260B	11/6/15 17:38		C P5K00
1,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0054	0.00041	1	8260B	11/6/15 17:38		C P5K00
1,2-Dibromoethane	BRL	mg/kg dry	0.0054	0.00022	1	8260B	11/6/15 17:38		C P5K00
1,2-Dichlorobenzene	BRL	mg/kg dry	0.0054	0.00025	1	8260B	11/6/15 17:38		C P5K00
1,2-Dichloroethane	BRL	mg/kg dry	0.0054	0.00032		8260B	11/6/15 17:38		C P5K00
1,2-Dichloropropane	BRL	mg/kg dry	0.0054	0.00033	1	8260B	11/6/15 17:38		C P5K00
1,3,5-Trimethylbenzene	BRL	mg/kg dry	0.0054	0.00041	1	8260B	11/6/15 17:38	MW&0	C(P5K00

11/19/2015

Cardno - Charlotte Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Prism Sample ID: 5110128-03
Prism Work Order: 5110128
Sample Matrix: Solid Time Collected: 11/04/15 10:45

Time Submitted: 11/05/15 16:40

Client Sample ID: GW-4 (0-1)

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis A Date/Time	Analyst Batch ID
1,3-Dichlorobenzene	BRL	mg/kg dry	0.0054	0.00036	1	8260B	11/6/15 17:38	MW&C(P5K0076
1,3-Dichloropropane	BRL	mg/kg dry	0.0054	0.00027	1	8260B	11/6/15 17:38	MW&C(P5K0076
1,4-Dichlorobenzene	BRL	mg/kg dry	0.0054	0.00021	1	8260B	11/6/15 17:38	MW&C(P5K0076
2,2-Dichloropropane	BRL	mg/kg dry	0.0054	0.00026	1	8260B	11/6/15 17:38	MW&C(P5K0076
2-Chlorotoluene	BRL	mg/kg dry	0.0054	0.00028	1	8260B	11/6/15 17:38	MW&C(P5K0076
4-Chlorotoluene	BRL	mg/kg dry	0.0054	0.00032	1	8260B	11/6/15 17:38	MW&C(P5K0076
4-Isopropyltoluene	BRL	mg/kg dry	0.0054	0.00026	1	8260B	11/6/15 17:38	MW&C(P5K0076
Acetone	BRL	mg/kg dry	0.054	0.0013	1	8260B	11/6/15 17:38	MW&C(P5K0076
Benzene	BRL	mg/kg dry	0.0032	0.00031	1	8260B	11/6/15 17:38	MW&C(P5K0076
Bromobenzene	BRL	mg/kg dry	0.0054	0.00045	1	8260B	11/6/15 17:38	MW&C(P5K0076
Bromochloromethane	BRL	mg/kg dry	0.0054	0.00030	1	8260B	11/6/15 17:38	MW&C(P5K0076
Bromodichloromethane	BRL	mg/kg dry	0.0054	0.00030	1	8260B	11/6/15 17:38	MW&C(P5K0076
Bromoform	BRL	mg/kg dry	0.0054	0.00061	1	8260B	11/6/15 17:38	MW&C(P5K0076
Bromomethane	BRL	mg/kg dry	0.011	0.00067	1	8260B	11/6/15 17:38	MW&C(P5K0076
Carbon Tetrachloride	BRL	mg/kg dry	0.0054	0.00027	1	8260B	11/6/15 17:38	MW&C(P5K0076
Chlorobenzene	BRL	mg/kg dry	0.0054	0.00029	1	8260B	11/6/15 17:38	MW&C(P5K0076
Chloroethane	BRL	mg/kg dry	0,011	0.00045	1	8260B	11/6/15 17:38	MW&C(P5K0076
Chloroform	BRL	mg/kg dry	0.0054	0.00039	1	8260B	11/6/15 17:38	MW&C(P5K0076
Chloromethane	BRL	mg/kg dry	0.0054	0.00036	1	8260B	11/6/15 17:38	MW&C(P5K0076
cis-1,2-Dichloroethylene	BRL	mg/kg dry	0.0054	0.00023	1	8260B	11/6/15 17:38	MW&C(P5K0076
cis-1,3-Dichloropropylene	BRL	mg/kg dry	0.0054	0.00018	1	8260B	11/6/15 17:38	MW&C(P5K0076
Dibromochloromethane	BRL	mg/kg dry	0.0054	0.00022	1	8260B	11/6/15 17:38	MW&C(P5K0076
Dichlorodifluoromethane	BRL CVL	mg/kg dry	0.0054	0.00024	1	8260B	11/6/15 17:38	MW&C(P5K0076
Ethylbenzene	BRL	mg/kg dry	0.0054	0.00021	1	8260B	11/6/15 17:38	MW&C(P5K0076
Isopropyl Ether	BRL	mg/kg dry	0.0054	0.00022	1	8260B	11/6/15 17:38	MW&C(P5K0076
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0054	0.00032	1	8260B	11/6/15 17:38	MW&C(P5K0076
m,p-Xylenes	BRL	mg/kg dry	0,011	0.00050	1	8260B	11/6/15 17:38	MW&C(P5K0076
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.054	0.00049	1	8260B	11/6/15 17:38	MW&C(P5K0076
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.11	0.00049	1	8260B	11/6/15 17:38	MW&C(P5K0076
Methyl Isobutyl Ketone	BRL	mg/kg dry	0,054	0.00046	1	8260B	11/6/15 17:38	MW&C(P5K0076
Methylene Chloride	BRL	mg/kg dry	0.0054	0.00030	1	8260B	11/6/15 17:38	MW&C(P5K0076
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.011	0.00017	1	8260B	11/6/15 17:38	MW&C(P5K0076
Naphthalene	BRL	mg/kg dry	0.011	0.00017	1	8260B	11/6/15 17:38	MW&C(P5K0076
n-Butylbenzene	BRL	mg/kg dry	0.0054	0.00027	1	8260B	11/6/15 17:38	MW&C(P5K0076
n-Propylbenzene	BRL	mg/kg dry	0.0054	0.00032	1	8260B	11/6/15 17:38	MW&C(P5K0076
o-Xylene	BRL	mg/kg dry	0.0054	0.00022	1	8260B	11/6/15 17:38	MW&C(P5K0076
sec-Butylbenzene	BRL				1	8260B	11/6/15 17:38	MW&C(P5K0076
•	BRL	mg/kg dry	0.0054	0.00026 0.00032	1	8260B	11/6/15 17:38	MW&C(P5K0076
Styrene		mg/kg dry	0.0054			8260B	11/6/15 17:38	MW&C(P5K0076
tert-Butylbenzene	BRL	mg/kg dry	0.0054	0.00018	1		11/6/15 17:38	MW&C(P5K0076
Tetrachloroethylene	BRL	mg/kg dry	0.0054	0.00026	1	8260B		MW&C(P5K0076
Toluene	BRL	mg/kg dry	0.0054	0.00031	1	8260B	11/6/15 17:38 11/6/15 17:38	MW&C(P5K0076
rans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0054	0.00032	1	8260B	11/6/15 17:36	MW&C(P5K0076
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0054	0.00028	1	8260B	11/0/15 17.30	MARGOTT

11/19/2015

Cardno - Charlotte Attn: Christine Schaefer Project: Kesler Mill (Brownfield)

Client Sample ID: GW-4 (0-1)

Prism Sample ID: 5110128-03 Prism Work Order: 5110128

Time Collected: 11/04/15 10:45

7606 Whitehall Executive Center Drive, Suite Charlotte, NC 28273

Sample Matrix: Solid

Time Collected: 11/04/15 10:45
Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis A Date/Time	nalyst Batch ID
Trichloroethylene	BRL	mg/kg dry	0.0054	0.00035	1	8260B	11/6/15 17:38	MW&C(P5K0076
Trichlorofluoromethane	BRL	mg/kg dry	0.0054	0.00035	1	8260B	11/6/15 17:38	MW&C(P5K0076
Vinyl acetate	BRL	mg/kg dry	0.027	0.00074	1	8260B	11/6/15 17:38	MW&C(P5K0076
Vinyl chloride	BRL	mg/kg dry	0.0054	0.00026	1	8260B	11/6/15 17:38	MW&C(P5K0076
Xylenes, total	BRL	mg/kg dry	0.016	0.0010	1	8260B	11/6/15 17:38	MW&C(P5K0076

Surrogate	Recovery	Control Limits
4-Bromofluorobenzene	101 %	70-130
Dibromofluoromethane	103 %	84-123
Toluene-d8	99 %	76-129

Cardno - Charlotte Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-4 (5-7) Prism Sample ID: 5110128-04 Prism Work Order: 5110128

Time Collected: 11/04/15 10:55 Time Submitted: 11/05/15 16:40

					111110	odbrinted. 1	1/05/15 16:4	•	
Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parameters	8								
% Solids	74.0	% by Weight	0.100	0.100	1	*SM2540 G	11/9/15 14:4	ARC	P5K0169
Polychlorinated Biphenyls (PC	CBs) by GC/ECD								
Aroclor 1016	BRL	mg/kg dry	0.068	0.0064	1	8082A	11/13/15 2:3	7 JMC	P5K0247
Arodor 1221	BRL	mg/kg dry	0.14	0.054	1	8082A	11/13/15 2:3	7 JMC	P5K0247
Aroclor 1232	BRL	mg/kg dry	0.14	0.018	1	8082A	11/13/15 2:3	7 JMC	P5K0247
Aroclor 1242	BRL	mg/kg dry	0.068	0.018	1	8082A	11/13/15 2:3	7 JMC	P5K0247
Aroclor 1248	BRL	mg/kg dry	0.068	0.014	1	8082A	11/13/15 2:3	7 JMC	P5K0247
Aroclor 1254	BRL	mg/kg dry	0.068	0.017	1	8082A	11/13/15 2:3	7 JMC	P5K0247
Aroclor 1260	BRL	mg/kg dry	0.068	0.0093	1	8082A	11/13/15 2:3	7 JMC	P5K0247
			Surrogate			Recov	ery	Control t	imits
			Tetrachloro	-m-xylene		56	%	36-182	
			Decachloro	biphenyl		89	%	34-182	
Semivolatile Organic Compou	nds by GC/MS								
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.45	0.069	1	8270D	11/10/15 20:	05 JMV	P5K0151
1,2-Dichlorobenzene	BRL	mg/kg dry	0.45	0.068	1	8270D	11/10/15 20:	05 JMV	P5K0151
1,3-Dichlorobenzene	BRL	mg/kg dry	0.45	0.063	1	8270D	11/10/15 20:	05 JMV	P5K0151
1,4-Dichlorobenzene	BRL	mg/kg dry	0.45	0.065	1	8270D	11/10/15 20:	05 JMV	P5K0151
1-Methylnaphthalene	BRL	mg/kg dry	0.45	0.086	1	8270D	11/10/15 20:	05 JMV	P5K0151
2,4,6-Trichlorophenol	BRL	mg/kg dry	0.45	0.084	1	8270D	11/10/15 20:	05 JMV	P5K0151
2,4-Dichlorophenol	BRL	mg/kg dry	0.45	0.086	1	8270D	11/10/15 20:	05 JMV	P5K0151
2,4-Dimethylphenol	BRL	mg/kg dry	0.45	0.068	1	8270D	11/10/15 20:	05 JMV	P5K0151
2,4-Dinitrophenol	BRL	mg/kg dry	0.45	0.062	1	8270D	11/10/15 20:	05 JMV	P5K0151
2,4-Dinitrotoluene	BRL	mg/kg dry	0.45	0.054	1	8270D	11/10/15 20:	05 JMV	P5K0151
2,6-Dinitrotoluene	BRL	mg/kg dry	0.45	0.059	1	8270D	11/10/15 20:	5 JM∨	P5K0151
2-Chloronaphthalene	BRL	mg/kg dry	0.45	0.065	1	8270D	11/10/15 20:	5 JMV	P5K0151
2-Chlorophenol	BRL	mg/kg dry	0.45	0.063	1	8270D	11/10/15 20:	05 JMV	P5K0151
2-Methylnaphthalene	BRL	mg/kg dry	0.45	0.071	1	8270D	11/10/15 20:	5 JM∨	P5K0151
2-Methylphenol	BRL	mg/kg dry	0.45	0.057	1	8270D	11/10/15 20:	05 JMV	P5K0151
2-Nitrophenol	BRL	mg/kg dry	0.45	0.081	1	8270D	11/10/15 20:		P5K0151
3,3'-Dichlorobenzidine	BRL	mg/kg dry	0.45	0.088	1	8270D	11/10/15 20:		P5K0151
3/4-Methylphenol	BRL	mg/kg dry	0.45	0.055	1	8270D	11/10/15 20:0	5 JMV	P5K0151
4,6-Dinitro-2-methylphenol	BRL	mg/kg dry	0.45	0.067	1	8270D	11/10/15 20:	05 JM∨	P5K0151
4-Bromophenyl phenyl ether	BRL	mg/kg dry	0.45	0.077	1	8270D	11/10/15 20:	05 JM∨	P5K0151
4-Chloro-3-methylphenol	BRL	mg/kg dry	0.45	0.062	1	8270D	11/10/15 20:		P5K0151
4-Chloroaniline	BRL	mg/kg dry	0.45	0.054	1	8270D	11/10/15 20:		P5K0151
4-Chlorophenyl phenyl ether	BRL	mg/kg dry	0.45	0.054	1	8270D	11/10/15 20:		P5K0151
4-Nitrophenol	BRL	mg/kg dry	0.45	0.069	1	8270D	11/10/15 20:		P5K0151
Acenaphthene	0.17 J	mg/kg dry	0.45	0.061	1	8270D	11/10/15 20:0		P5K0151
·					1	8270D	11/10/15 20:0		P5K0151
Acenaphthylene	0.74	mg/kg dry	0.45	0.065			11/10/15 20:0		P5K0151
Anthracene	1.3	mg/kg dry	0.45	0.072	1	8270D			P5K0151
Azobenzene	BRL	mg/kg dry	0.45	0.059	1	8270D	11/10/15 20:	JU UIVIV	

Cardno - Charlotte

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-4 (5-7)

Prism Sample ID: 5110128-04 Prism Work Order: 5110128

Time Collected: 11/04/15 10:55 Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analyst Date/Time	Batch ID
Benzo(a)anthracene	2.1	mg/kg dry	0.45	0.058	1	8270D	11/10/15 20:05 JMV	P5K0151
Benzo(a)pyrene	1.5	mg/kg dry	0.45	0.048	1	8270D	11/10/15 20:05 JMV	P5K0151
Benzo(b)fluoranthene	2.0	mg/kg dry	0.45	0.052	1	8270D	11/10/15 20:05 JMV	P5K0151
Benzo(g,h,i)perylene	0.77	mg/kg dry	0.45	0.049	1	8270D	11/10/15 20:05 JMV	P5K0151
Benzo(k)fluoranthene	0.64	mg/kg dry	0.45	0.058	1	8270D	11/10/15 20:05 JMV	P5K0151
Benzoic Acid	BRL	mg/kg dry	0.45	0.038	1	8270D	11/10/15 20:05 JMV	P5K0151
Benzyl alcohol	BRL	mg/kg dry	0.45	0.059	1	8270D	11/10/15 20:05 JMV	P5K0151
bis(2-Chloroethoxy)methane	BRL	mg/kg dry	0.45	0.077	1	8270D	11/10/15 20:05 JMV	P5K0151
Bis(2-Chloroethyl)ether	BRL.	mg/kg dry	0.45	0.063	1	8270D	11/10/15 20:05 JMV	P5K0151
Bis(2-chloroisopropyl)ether	BRL	mg/kg dry	0.45	0.076	1	8270D	11/10/15 20:05 JMV	P5K0151
Bis(2-Ethylhexyl)phthalate	BRL	mg/kg dry	0.45	0.066	1	8270D	11/10/15 20:05 JMV	P5K0151
Butyl benzyl phthalate	BRL	mg/kg dry	0.45	0.063	1	8270D	11/10/15 20:05 JMV	P5K0151
Chrysene	1.7	mg/kg dry	0.45	0.056	1	8270D	11/10/15 20:05 JMV	P5K0151
Dibenzo(a,h)anthracene	0.22 J	mg/kg dry	0.45	0.054	1	8270D	11/10/15 20:05 JMV	P5K0151
Dibenzofuran	0.34 J	mg/kg dry	0.45	0.068	1	8270D	11/10/15 20:05 JMV	P5K0151
Diethyl phthalate	BRL	mg/kg dry	0.45	0.061	1	8270D	11/10/15 20:05 JMV	P5K0151
Dimethyl phthalate	BRL	mg/kg dry	0.45	0.059	1	8270D	11/10/15 20:05 JMV	P5K0151
Di-n-butyl phthalate	BRL	mg/kg dry	0.45	0.063	1	8270D	11/10/15 20:05 JMV	P5K0151
Di-n-octyl phthalate	BRL ,	mg/kg dry	0.45	0.055	1	8270D	11/10/15 20:05 JMV	P5K0151
Fluoranthene	4.2	mg/kg dry	0.45	0.057	1	8270D	11/10/15 20:05 JMV	P5K0151
Fluorene	0.25 J	mg/kg dry	0.45	0.064	1	8270D	11/10/15 20:05 JMV	P5K0151
Hexachlorobenzene	BRL	mg/kg dry	0.45	0.071	1	8270D	11/10/15 20:05 JMV	P5K0151
Hexachlorobutadiene	BRL	mg/kg dry	0.45	0.080	1	8270D	11/10/15 20:05 JMV	P5K0151
Hexachlorocyclopentadiene	BRL	mg/kg dry	0.45	0.079	1	8270D	11/10/15 20:05 JMV	P5K0151
Hexachioroethane	BRL	mg/kg dry	0.45	0.075	1	8270D	11/10/15 20:05 JMV	P5K0151
Indeno(1,2,3-cd)pyrene	0.85	mg/kg dry	0.45	0.051	1	8270D	11/10/15 20:05 JMV	P5K0151
Isophorone	BRL	mg/kg dry	0.45	0.060	1	8270D	11/10/15 20:05 JMV	P5K0151
Naphthalene	0.13 J	mg/kg dry	0.45	0.072	1	8270D	11/10/15 20:05 JMV	P5K0151
Nitrobenzene	BRL	mg/kg dry	0.45	0.063	1	8270D	11/10/15 20:05 JMV	P5K0151
N-Nitroso-di-n-propylamine	BRL	mg/kg dry	0.45	0.070	1 '	8270D	11/10/15 20:05 JMV	P5K0151
N-Nitrosodiphenylamine	BRL	mg/kg dry	0.45	0.068	1	8270D	11/10/15 20:05 JMV	P5K0151
Pentachiorophenol	BRL	mg/kg dry	0.45	0.053	1	8270D	11/10/15 20:05 JMV	P5K0151
Phenanthrene	3.6	mg/kg dry	0.45	0.058	1	8270D	11/10/15 20:05 JMV	P5K0151
Phenol	BRL	mg/kg dry	0.45	0.066	1	8270D	11/10/15 20:05 JMV	P5K0151
Pyrene	3.6	mg/kg dry	0.45	0.059	1	8270D	11/10/15 20:05 JMV	P5K0151

Surrogate	Recovery	Control Limits
2,4,6-Tribromophenol	83 %	39-132
2-Fluorobiphenyl	79 %	44-115
2-Fluorophenol	70 %	35-115
Nitrobenzene-d5	66 %	37-122
Phenol-d5	74 %	34-121
Terphenyl-d14	83 %	54-127
• •		

Cardno - Charlotte Attn: Christine Schaefer 7606 Whitehall Executive Center Drive, Suite Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-4 (5-7) Prism Sample ID: 5110128-04 Prism Work Order: 5110128 Time Collected: 11/04/15 10:55 Time Submitted: 11/05/15 16:40

Mercury 0.045 mg/kg dry 0.025 0.016 1 "7471B 11/9/15 1:2:38 JAB JAB Antimony BRL mg/kg dry 0.33 0.052 1 6010C 11/10/15 1:2:38 JAB JAR Arsenic 3.1 mg/kg dry 0.33 0.074 1 *6010C 11/10/15 1:12 BGM JAR Barium 79 mg/kg dry 0.33 0.011 1 *6010C 11/10/15 1:12 BGM JBM Beryllium 0.99 mg/kg dry 0.33 0.011 1 *6010C 11/10/15 1:12 BGM JBM	Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analyst Date/Time	Batch ID
Mereury	Total Metals								
Antemony BRL mg/kg dry 0.33 0.052 1 1 6010C 11/10/15 1:12 BGM Arsenic 3.1 mg/kg dry 0.33 0.074 1 4010C 11/10/15 1:12 BGM Baryllium 79 mg/kg dry 0.33 0.074 1 4010C 11/10/15 1:12 BGM Baryllium 0.99 mg/kg dry 0.33 0.011 1 4010C 11/10/15 1:12 BGM Baryllium 0.99 mg/kg dry 0.33 0.011 1 4010C 11/10/15 1:12 BGM Cadmium 0.37 mg/kg dry 0.33 0.007 1 4010C 11/10/15 1:12 BGM Cadmium 30 mg/kg dry 0.33 0.007 1 4010C 11/10/15 1:12 BGM Chromium 30 mg/kg dry 0.33 0.046 1 4010C 11/10/15 1:12 BGM Chromium 30 mg/kg dry 0.33 0.046 1 4010C 11/10/15 1:12 BGM Chromium 30 mg/kg dry 0.33 0.040 1 4010C 11/10/15 1:12 BGM Chrom 6800 mg/kg dry 0.33 0.040 1 4010C 11/10/15 1:12 BGM Iron 68000 mg/kg dry 0.33 0.010 1 1000C 11/10/15 1:12 BGM Iron 68000 mg/kg dry 0.33 0.035 1 1000C 11/10/15 1:12 BGM Iron 68000 mg/kg dry 0.33 0.035 1 1000C 11/10/15 1:12 BGM Iron 68000 mg/kg dry 0.33 0.035 1 1000C 11/10/15 1:12 BGM Iron 68000 mg/kg dry 0.33 0.035 1 1000C 11/10/15 1:12 BGM Iron 68000 mg/kg dry 0.33 0.035 1 1000C 11/10/15 1:12 BGM Iron 68000 mg/kg dry 0.33 0.035 1 1000C 11/10/15 1:12 BGM Iron 68000 mg/kg dry 0.33 0.036 1 1000C 11/10/15 1:12 BGM Iron 68000 mg/kg dry 0.33 0.036 1 1000C 11/10/15 1:12 BGM Iron 68000 mg/kg dry 0.33 0.036 1 1000C 11/10/15 1:12 BGM Iron 68000 mg/kg dry 0.33 0.036 1 1000C 11/10/15 1:12 BGM Iron 1000C 11/10/15 1:12	Aluminum	29000	mg/kg dry	660	90	200	*6010C	11/12/15 17:55 BGM	P5K0149
Areanic 3.1	Mercury	0.045	mg/kg dry	0.025	0.0016	1	*7471B	11/9/15 12:38 JAB	P5K0150
Barlum	Antimony	BRL	mg/kg dry	0.33	0.052	1.	*6010C	11/10/15 1:12 BGM	P5K0149
Beryllium	Arsenic	3.1	mg/kg dry	0.33	0.074	1	*6010C	11/10/15 1:12 BGM	P5K0149
Cadmium 0.37 mg/kg dry 0.33 0.0070 1 *6010C 11/10/15 1:12 BGM Calcium 860 mg/kg dry 13 0.86 1 *6010C 11/10/15 1:12 BGM I Chromium 30 mg/kg dry 0.33 0.010 1 *6010C 11/10/15 1:12 BGM I Cobatt 21 mg/kg dry 0.33 0.010 1 *6010C 11/10/15 1:12 BGM I Copper 85 mg/kg dry 0.36 0.12 1 *6010C 11/10/15 1:12 BGM I Inco 68000 mg/kg dry 0.33 0.33 0.20 *6010C 11/10/15 1:12 BGM I Lead 13 mg/kg dry 0.33 0.081 1 *6010C 11/10/15 1:12 BGM I Maganesium 1100 mg/kg dry 0.33 0.081 1 *6010C 11/10/15 </td <td>Barium .</td> <td>79</td> <td>mg/kg dry</td> <td>0.66</td> <td>0.35</td> <td>1</td> <td>*6010C</td> <td>11/10/15 1:12 BGM</td> <td>P5K0149</td>	Barium .	79	mg/kg dry	0.66	0.35	1	*6010C	11/10/15 1:12 BGM	P5K0149
Calcium	Beryllium	0.99	mg/kg dry	0.33	0.011	1	*6010C	11/10/15 1:12 BGM	P5K0149
Chromium 30 mg/kg dry 0.33 0.046 1 feb10C 11/10/15 1:12 BGM ECData 2:1 mg/kg dry 0.33 0.010 1 feb10C 11/10/15 1:12 BGM ECData 2:1 mg/kg dry 0.66 0.12 1 feb10C 11/10/15 1:12 BGM ECData 1:10/16 1:12 BGM ECDATA 1:10/1	Cadmium	0.37	mg/kg dry	0.33	0.0070	1	*6010C	11/10/15 1:12 BGM	P5K0149
Cobalt 21 mg/kg dry 0.33 0.010 1 6910C 11/10/15 1:12 BGM Copper 55 mg/kg dry 0.66 0.12 1 -6910C 11/10/15 1:12 BGM I Iron 68000 mg/kg dry 0.33 0.035 1 -6910C 11/10/15 1:12 BGM I Lead 13 mg/kg dry 0.33 0.035 1 -6910C 11/10/15 1:12 BGM I Magnasab 410 mg/kg dry 0.33 0.061 1 6010C 11/10/15 1:12 BGM I Nickel 8.8 mg/kg dry 0.68 0.062 1 6010C 11/10/15 1:12 BGM I Selenium 770 mg/kg dry 0.68 0.048 1 6010C 11/10/15 1:12 BGM F Silver BRL mg/kg dry 0.33 0.0054 1 6010C 11/10/15	Calcium	850	mg/kg dry	13	0.86	1	*6010C	11/10/15 1:12 BGM	P5K0149
Copper 65 mg/kg dry 0.86 0.12 1 *6010C 11/10/16 1:12 BGM fron 68000 mg/kg dry 1300 390 200 *6010C 11/10/15 1:75 BGM I Lead 13 mg/kg dry 0.33 0.335 1 *6010C 11/10/15 1:12 BGM I Magnesium 1100 mg/kg dry 0.33 0.081 1 *6010C 11/10/15 1:12 BGM I Nickel 8.8 mg/kg dry 0.68 0.062 1 *6010C 11/10/15 1:12 BGM I Selenium BRL mg/kg dry 0.68 0.048 1 *6010C 11/10/15 1:12 BGM I Sclutum 70 mg/kg dry 0.68 0.048 1 *6010C 11/10/15 1:12 BGM I Sclutum 70 mg/kg dry 0.33 0.048 1 *6010C 11/10/15 <td>Chromium</td> <td>30</td> <td>mg/kg dry</td> <td>0.33</td> <td>0.045</td> <td>1</td> <td>*6010C</td> <td>11/10/15 1:12 BGM</td> <td>P5K0149</td>	Chromium	30	mg/kg dry	0.33	0.045	1	*6010C	11/10/15 1:12 BGM	P5K0149
Lead	Cobalt	21	mg/kg dry	0.33	0.010	1	*6010C	11/10/15 1:12 BGM	P5K0149
13	Copper	55	mg/kg dry	0.66	0.12	1	*6010C	11/10/15 1:12 BGM	P5K0149
Magnesium 1100 mg/kg dry 3.3 0.36 1 *6010C 11/10/15 1:12 BGM Manganese Manganese 410 mg/kg dry 0.33 0.081 1 *6010C 11/10/15 1:12 BGM F Nickel 8.8 mg/kg dry 0.66 0.062 1 *6010C 11/10/15 1:12 BGM F Potassium 770 mg/kg dry 0.66 0.048 1 *6010C 11/10/15 1:12 BGM F Sclenium BRL mg/kg dry 0.66 0.048 1 *6010C 11/10/15 1:12 BGM F Scledium 70 mg/kg dry 0.33 0.0054 1 *6010C 11/10/15 1:12 BGM F Scludium 120 mg/kg dry 0.66 0.048 1 *6010C 11/10/15 1:12 BGM F Valadium 120 mg/kg dry 0.33 0.011 1	Iron	68000	mg/kg dry	1300	390	200	*6010C	11/12/15 17:55 BGM	P5K0149
Magnesium 1100 mg/kg dry 3.3 0.38 1 *6010C 11/10/15 1:12 BGM If Manganese 410 mg/kg dry 0.33 0.061 1 *6010C 11/10/15 1:12 BGM If Nickel 8.8 mg/kg dry 0.66 0.062 1 *6010C 11/10/15 1:12 BGM If Selenium BRL mg/kg dry 0.66 0.048 1 *6010C 11/10/15 1:12 BGM If Silver BRL mg/kg dry 0.66 0.048 1 *6010C 11/10/15 1:12 BGM If Sodium 70 mg/kg dry 0.66 0.048 1 *6010C 11/10/15 1:12 BGM If Vanadium 120 mg/kg dry 0.66 0.048 1 *6010C 11/10/15 1:12 BGM If Vanadium 120 mg/kg dry 0.33 0.011 1 *	Lead	13	mg/kg dry	0.33	0.035	1	*6010C	11/10/15 1:12 BGM	P5K0149
Nicke 8.8 mg/kg dry 0.66 0.062 1 *6010C 11/10/15 1:12 BGM Fotassium	Magnesium	1100	mg/kg dry	3.3	0.36	1	*6010C	11/10/15 1:12 BGM	P5K0149
Potassium 770 mg/kg dry 17 1.6 1 *6010C 11/10/15 1:12 BGM Estenium BRL mg/kg dry 0.66 0.048 1 *6010C 11/10/15 1:12 BGM Estenium BRL mg/kg dry 0.33 0.0054 1 *6010C 11/10/15 1:12 BGM Estenium BRL mg/kg dry 0.33 0.0054 1 *6010C 11/10/15 1:12 BGM Estenium BRL mg/kg dry 0.66 0.048 1 *6010C 11/10/15 1:12 BGM Estenium BRL mg/kg dry 0.66 0.048 1 *6010C 11/10/15 1:12 BGM Estenium BRL mg/kg dry 0.33 0.011 1 *6010C 11/10/15 1:12 BGM Estenium BRL mg/kg dry 0.33 0.040 1 *6010C 11/10/15 1:12 BGM Estenium BRL mg/kg dry 0.33 0.040 1 *6010C 11/10/15 1:12 BGM Estenium BRL mg/kg dry 0.0057 0.00046 1 B260B 11/6/15 1:06 MW&CC Estenium BRL mg/kg dry 0.0057 0.00027 1 B260B 11/6/15 1:06 MW&CC Estenium BRL mg/kg dry 0.0057 0.00038 1 B260B 11/6/15 1:06 MW&CC Estenium BRL mg/kg dry 0.0057 0.00038 1 B260B 11/6/15 1:06 MW&CC Estenium BRL mg/kg dry 0.0057 0.00050 1 B260B 11/6/15 1:06 MW&CC Estenium BRL mg/kg dry 0.0057 0.00050 1 B260B 11/6/15 1:06 MW&CC Estenium BRL mg/kg dry 0.0057 0.00050 1 B260B 11/6/15 1:06 MW&CC Estenium BRL mg/kg dry 0.0057 0.00050 1 B260B 11/6/15 1:06 MW&CC Estenium BRL mg/kg dry 0.0057 0.00031 1 B260B 11/6/15 1:06 MW&CC Estenium BRL mg/kg dry 0.0057 0.00032 1 B260B 11/6/15 1:06 MW&CC Estenium BRL mg/kg dry 0.0057 0.00032 1 B260B 11/6/15 1:06 MW&CC Estenium BRL mg/kg dry 0.0057 0.00032 1 B260B 11/6/15 1:06 MW&CC Estenium BRL mg/kg dry 0.0057 0.00032 1 B260B 11/6/15 1:06 MW&CC Estenium BRL mg/kg dry 0.0057 0.00032 1 B260B 11/6/15 1:06 MW&CC Estenium BRL mg/kg dry 0.0057 0.00032 1 B260B 11/6/15 1:06 MW&CC Estenium BRL mg/kg dry 0.0057 0.0	Manganese	410	mg/kg dry	0.33	0.061	1	*6010C	11/10/15 1:12 BGM	P5K0149
Potassium Potassium Potassium Potassium Potassium Potassium BRL mg/kg dry 0.86 0.048 1 16010C 11/10/15 1:12 BGM Filter BRL mg/kg dry 0.33 0.0054 1 16010C 11/10/15 1:12 BGM Filter BGM Filter BRL mg/kg dry 0.33 0.0054 1 16010C 11/10/15 1:12 BGM Filter BGM Filter BRL mg/kg dry 0.86 0.048 1 16010C 11/10/15 1:12 BGM Filter BGM	Nickel	8.8				1	*6010C		P5K0149
Selenium BRL mg/kg dry 0.66 0.048 1 *6010C 11/10/15 1:12 BGM F Solium 70 mg/kg dry 20 0.58 1 *6010C 11/10/15 1:12 BGM F Sodium 70 mg/kg dry 20 0.58 1 *6010C 11/10/15 1:12 BGM F Sodium BRL mg/kg dry 0.66 0.048 1 *6010C 11/10/15 1:12 BGM F Sodium 120 mg/kg dry 0.33 0.011 1 *6010C 11/10/15 1:12 BGM F Solium 120 mg/kg dry 0.33 0.011 1 *6010C 11/10/15 1:12 BGM F Solium 120 mg/kg dry 0.33 0.040 1 *5010C 11/10/15 1:12 BGM F Solium 11/10/15 1:12 BGM F Solium 11/10/15 1:12 BGM F Solium 11/10/15 1:12 BGM F Solium 11/10/15 1:12 BGM F Solium 11/10/15 1:12 BGM F Solium 11/10/15 1:12 BGM F Solium 11/10/15 1:12 BGM F Solium 11/10/15 1:12 BGM F Solium 11/10/15 1:12 BGM F Solium 11/10/15 1:12 BGM F Solium 11/10/15 1:12 BGM F Solium 11/10/15 1:12 BGM F Solium 11/10/15 1:12 BGM F Solium 11/10/15 1:12 BGM F Solium 11/10/15 1:12 BGM F Solium 11/10/15 I:12 BGM F Solium I1/10/15 I:12 BGM I1/10/15 I:12 BGM I1/10/15 I:12 BGM I1/10/15 I:12 BGM I1/10/15 I:12 BGM I1/10/15 I:12 BGM I1/10/15 I:12 BGM I1/10/15 I:12 BGM I1/10/15 I:12 BGM I1/10/15 I:12 BGM I1/10/15 I:	Potassium	770				1			P5K0149
Total Tota	Selenium	BRL					*6010C		P5K0149
Thallium BRL mg/kg dry 0.66 0.048 1 *6010C 11/10/15 1:12 BGM Foundation 120 mg/kg dry 0.33 0.011 1 *6010C 11/10/15 1:12 BGM Foundation 120 mg/kg dry 0.33 0.040 1 *6010C 11/10/15 1:12 BGM Foundation 11/10/15 1:12 BGM Foundation 11/10/16 1:10 MW&CC Foundation 11/10/16 1:10 MW&CC Foundation 11/10/16 1:10 MW&CC Foundation 11/10/16 1:10 MW&CC Foundation 11/10/16 1:10 MW&CC Foundation 11/10/16 1:10 MW&CC Foundation 11/10/16 1:10 MW&CC Foundation 11/10/16 1:10 MW&CC Foundation 11/10/16 1:10 MW&CC Foundation 11/10/16 1:10 MW&CC Foundation 11/10/16 1:10 MW&CC Foundation 11/10/16 1:10 MW&CC Foundation 11/10/16 1:10 MW&CC Foundation 11/10/16 1:10 M	Silver	BRL	mg/kg dry	0.33	0.0054	1	*6010C	11/10/15 1:12 BGM	P5K0149
Vanadium 120 mg/kg dry 0.33 0.011 1 *6010C 11/10/15 1:12 BGM F Zine 36 mg/kg dry 0.33 0.040 1 *6010C 11/10/15 1:12 BGM F Volatile Organic Compounds by GC/MS Volatile Organic Compounds by GC/MS 1,1,1,2-Trichloroethane BRL mg/kg dry 0.0057 0.00046 1 8260B 11/6/15 18:06 MW&CC F 1,1,1-Trichloroethane BRL mg/kg dry 0.0057 0.00038 1 8260B 11/6/15 18:06 MW&CC F 1,1,2-Trichloroethane BRL mg/kg dry 0.0057 0.00038 1 8260B 11/6/15 18:06 MW&CC F 1,1-Dichloroethane BRL mg/kg dry 0.0057 0.00016 1 8260B 11/6/15 18:06 MW&CC F 1,1-Dichloroethane BRL mg/kg dry 0.0057 0.00025 1 8260B 11/6/15 18:06 MW&CC F 1,1-Dic	Sodium	· 70	mg/kg dry	20	0.58	1	*6010C	11/10/15 1:12 BGM	P5K0149
Zine 36 mg/kg dry 3.3 0.040 1 *6010C 11/10/15 1:12 BGM F Volatile Organic Compounds by GC/MS Moderation ""><td>Thallium</td><td>BRL</td><td>mg/kg dry</td><td>0.66</td><td>0.048</td><td>1</td><td>*6010C</td><td>11/10/15 1:12 BGM</td><td>P5K0149</td></th<>	Thallium	BRL	mg/kg dry	0.66	0.048	1	*6010C	11/10/15 1:12 BGM	P5K0149
Volatile Organic Compounds by GC/MS May (kg dry 0.0057 0.00046 1 0.00046 1 0.00046 1.1.1/6/15 18:06 MW&CC F.	Vanadium	120	mg/kg dry	0.33	0.011	1	*6010C	11/10/15 1:12 BGM	P5K0149
1,1,1,2-Tetrachloroethane BRL mg/kg dry 0.0057 0.00046 1 8260B 11/6/15 18:06 MW&CC F 1,1,1-Trichloroethane BRL mg/kg dry 0.0057 0.00027 1 8260B 11/6/15 18:06 MW&CC F 1,1,2-Tetrachloroethane BRL mg/kg dry 0.0057 0.00038 1 8260B 11/6/15 18:06 MW&CC F 1,1,2-Trichloroethane BRL mg/kg dry 0.0057 0.00038 1 8260B 11/6/15 18:06 MW&CC F 1,1,2-Trichloroethane BRL mg/kg dry 0.0057 0.00050 1 8260B 11/6/15 18:06 MW&CC F 1,1-Dichloroethane BRL mg/kg dry 0.0057 0.00016 1 8260B 11/6/15 18:06 MW&CC F 1,1-Dichloroethylene BRL mg/kg dry 0.0057 0.00025 1 8260B 11/6/15 18:06 MW&CC F 1,1-Dichloropropylene BRL mg/kg dry 0.0057 0.00031 1 8260B 11/6/15 18:06 MW&CC F 1,2,3-Trichlorobenzene BRL mg/kg dry 0.0057 0.00032 1 8260B 11/6/15 18:06 MW&CC F 1,2,3-Trichloropropane BRL mg/kg dry 0.0057 0.00072 1 8260B 11/6/15 18:06 MW&CC F 1,2,4-Trichlorobenzene BRL mg/kg dry 0.0057 0.00072 1 8260B 11/6/15 18:06 MW&CC F 1,2,4-Trichlorobenzene BRL mg/kg dry 0.0057 0.00042 1 8260B 11/6/15 18:06 MW&CC F 1,2,4-Trichlorobenzene BRL mg/kg dry 0.0057 0.00042 1 8260B 11/6/15 18:06 MW&CC F 1,2,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00043 1 8260B 11/6/15 18:06 MW&CC F 1,2,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00023 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00023 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00027 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00027 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00027 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichloropropane BRL mg/kg dry 0.0057 0.00035 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichloropropane BRL mg/kg dry 0.0057 0.00035 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichloropropane	Zinc	36	mg/kg dry	3.3	0.040	1	*6010C	11/10/15 1:12 BGM	P5K0149
1,1,1-Trichloroethane	Volatile Organic Compounds	by GC/MS							
1,1,2,2-Tetrachloroethane	1,1,1,2-Tetrachloroethane	BRL	mg/kg dry	0.0057	0.00046	1	8260B	11/6/15 18:06 MW&C0	P5K0076
### BRL mg/kg dry 0.0057 0.00050 1 8260B 11/6/15 18:06 MW&CC F ### MW&CC	1,1,1-Trichloroethane	BRL	mg/kg dry	0.0057	0.00027	1	8260B	11/6/15 18:06 MW&C(P5K0076
1,1-Dichloroethane BRL mg/kg dry 0.0057 0.00016 1 8260B 11/6/15 18:06 MW&CC F 1,1-Dichloroethylene BRL mg/kg dry 0.0057 0.00025 1 8260B 11/6/15 18:06 MW&CC F 1,1-Dichloropropylene BRL mg/kg dry 0.0057 0.00031 1 8260B 11/6/15 18:06 MW&CC F 1,2,3-Trichlorobenzene BRL mg/kg dry 0.0057 0.00032 1 8260B 11/6/15 18:06 MW&CC F 1,2,3-Trichloropropane BRL mg/kg dry 0.0057 0.00032 1 8260B 11/6/15 18:06 MW&CC F 1,2,3-Trichloropropane BRL mg/kg dry 0.0057 0.00072 1 8260B 11/6/15 18:06 MW&CC F 1,2,4-Trichlorobenzene BRL mg/kg dry 0.0057 0.00042 1 8260B 11/6/15 18:06 MW&CC F 1,2,4-Trimethylbenzene BRL mg/kg dry 0.0057 0.00043 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00023 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00023 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00027 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00027 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00034 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichloropenane BRL mg/kg dry 0.0057 0.00035 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichloropenane BRL mg/kg dry 0.0057 0.00035 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichloropenane BRL mg/kg dry 0.0057 0.00035 1 8260B 11/6/15 18:06 MW&CC F	1,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0057	0.00038	1	8260B	11/6/15 18:06 MW&C(P5K0076
1,1-Dichloroethylene BRL mg/kg dry 0,0057 0,00025 1 8260B 11/6/15 18:06 MW&CC F 1,2-3-Trichlorobenzene BRL mg/kg dry 0,0057 0,00031 1 8260B 11/6/15 18:06 MW&CC F 1,2,3-Trichlorobenzene BRL mg/kg dry 0,0057 0,00032 1 8260B 11/6/15 18:06 MW&CC F 1,2,3-Trichlorobenzene BRL mg/kg dry 0,0057 0,00072 1 8260B 11/6/15 18:06 MW&CC F 1,2,4-Trichlorobenzene BRL mg/kg dry 0,0057 0,00072 1 8260B 11/6/15 18:06 MW&CC F 1,2,4-Trimethylbenzene BRL mg/kg dry 0,0057 0,00042 1 8260B 11/6/15 18:06 MW&CC F 1,2,4-Trimethylbenzene BRL mg/kg dry 0,0057 0,00043 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0,0057 0,00023 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0,0057 0,00023 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0,0057 0,00027 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0,0057 0,00034 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichloropropane BRL mg/kg dry 0,0057 0,00035 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichloropropane BRL mg/kg dry 0,0057 0,00035 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichloropropane	1,1,2-Trichloroethane	BRL	mg/kg dry	0.0057	0.00050	1	8260B	11/6/15 18:06 MW&C(P5K0076
1,1-Dichloropropylene BRL mg/kg dry 0.0057 0.00031 1 8260B 11/6/15 18:06 MW&CC F 1,2,3-Trichlorobenzene BRL mg/kg dry 0.0057 0.00032 1 8260B 11/6/15 18:06 MW&CC F 1,2,3-Trichloropropane BRL mg/kg dry 0.0057 0.00072 1 8260B 11/6/15 18:06 MW&CC F 1,2,4-Trichlorobenzene BRL mg/kg dry 0.0057 0.00042 1 8260B 11/6/15 18:06 MW&CC F 1,2,4-Trimethylbenzene BRL mg/kg dry 0.0057 0.00043 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dibromoethane BRL mg/kg dry 0.0057 0.00023 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00023 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00037 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichloropropane	1,1-Dichloroethane	BRL	mg/kg dry	0.0057	0.00016	1	8260B	11/6/15 18:06 MW&C(P5K0076
1,2,3-Trichlorobenzene BRL mg/kg dry 0.0057 0.00032 1 8260B 11/6/15 18:06 MW&CC F 1,2,3-Trichloropropane BRL mg/kg dry 0.0057 0.00072 1 8260B 11/6/15 18:06 MW&CC F 1,2,4-Trichlorobenzene BRL mg/kg dry 0.0057 0.00042 1 8260B 11/6/15 18:06 MW&CC F 1,2,4-Trimethylbenzene BRL mg/kg dry 0.0057 0.00043 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dibromoethane BRL mg/kg dry 0.0057 0.00023 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00023 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00027 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichloroperpane BRL mg/kg dry 0.0057 0.00035 1 8260B 11/6/15 18:06 MW&CC F	1,1-Dichloroethylene	BRL	mg/kg dry	0.0057	0.00025	1	8260B		
1,2,3-Trichloropropane BRL mg/kg dry 0.0057 0.00072 1 8260B 11/6/15 18:06 MW&CC F 1,2,4-Trichlorobenzene BRL mg/kg dry 0.0057 0.00042 1 8260B 11/6/15 18:06 MW&CC F 1,2,4-Trimethylbenzene BRL mg/kg dry 0.0057 0.00043 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dibromoethane BRL mg/kg dry 0.0057 0.00023 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00027 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichloroethane BRL mg/kg dry 0.0057 0.00034 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichloropropane BRL mg/kg dry 0.0057 0.00035 1 8260B 11/6/15 18:06 MW&CC F	1,1-Dichloropropylene	BRL	mg/kg dry	0.0057	0.00031	1	8260B		
1,2,4-Trichlorobenzene BRL mg/kg dry 0,0057 0.00042 1 8260B 11/6/15 18:06 MW&CC F 1,2,4-Trimethylbenzene BRL mg/kg dry 0.0057 0.00043 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dibromoethane BRL mg/kg dry 0.0057 0.00023 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00027 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichloroethane BRL mg/kg dry 0.0057 0.00034 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichloropropane BRL mg/kg dry 0.0057 0.00035 1 8260B 11/6/15 18:06 MW&CC F	1,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0057	0.00032	1	8260B		
1,2,4-Trimethylbenzene BRL mg/kg dry 0.0057 0.00043 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dibromoethane BRL mg/kg dry 0.0057 0.00023 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00027 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichloroethane BRL mg/kg dry 0.0057 0.00034 1 8260B 11/6/15 18:06 MW&CC F 1,2-Dichloropropane BRL mg/kg dry 0.0057 0.00035 1 8260B 11/6/15 18:06 MW&CC F	1,2,3-Trichloropropane	BRL	mg/kg dry	0.0057	0.00072	1	8260B		
I,2-Dibromoethane BRL mg/kg dry 0.0057 0.00023 1 8260B 11/6/15 18:06 MW&CC F I,2-Dichlorobenzene BRL mg/kg dry 0.0057 0.00027 1 8260B 11/6/15 18:06 MW&CC F I,2-Dichloroethane BRL mg/kg dry 0.0057 0.00034 1 8260B 11/6/15 18:06 MW&CC F I,2-Dichloropropane BRL mg/kg dry 0.0057 0.00035 1 8260B 11/6/15 18:06 MW&CC F	1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0057	0.00042	1	8260B		
I,2-Dichlorobenzene BRL mg/kg dry 0,0057 0,00027 1 8260B 11/6/15 18:06 MW&CC F I,2-Dichloroethane BRL mg/kg dry 0.0057 0.00034 1 8260B 11/6/15 18:06 MW&CC F I,2-Dichloropropane BRL mg/kg dry 0.0057 0.00035 1 8260B 11/6/15 18:06 MW&CC F	•		•						
I,2-Dichloroethane BRL mg/kg dry 0.0057 0.00034 1 8260B 11/6/15 18:06 MW&CC F I,2-Dichloropropane BRL mg/kg dry 0.0057 0.00035 1 8260B 11/6/15 18:06 MW&CC F									
1,2-Dichloropropane BRL mg/kg dry 0.0057 0.00035 1 8260B 11/6/15 18:06 MW&CC F			-						
, 3,3- Himeurypenzene BRL mg/kg ary 0,0057 0,00043 1 8260B 11/6/15 18:08 MVV&CC F	•								
,3-Dichlorobenzene BRL mg/kg dry 0.0057 0.00037 1 8260B 11/6/15 18:06 MW&CC F	· ·								

Cardno - Charlotte Attn: Christine Schaefer 7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-4 (5-7)
Prism Sample ID: 5110128-04
Prism Work Order: 5110128
Time Collected: 11/04/15 10:55
Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
1,3-Dichloropropane	BRL	mg/kg dry	0.0057	0.00028	1	8260B	11/6/15 18:06	MW&C0	P5K0076
1,4-Dichlorobenzene	BRL	mg/kg dry	0.0057	0.00022	1	8260B	11/6/15 18:06	MW&C	P5K0076
2,2-Dichloropropane	BRL	mg/kg dry	0.0057	0.00027	1	8260B	11/6/15 18:06	MW&C	P5K0076
2-Chlorotoluene	BRL	mg/kg dry	0.0057	0.00029	1	8260B	11/6/15 18:06	MW&C	P5K0076
4-Chlorotoluene	BRL	mg/kg dry	0.0057	0.00034	1	8260B	11/6/15 18:06	MW&C	P5K0076
4-Isopropyltoluene	BRL	mg/kg dry	0.0057	0.00027	1	8260B	11/6/15 18:06	MW&C	P5K0076
Acetone	BRL	mg/kg dry	0.057	0.0014	1	8260B	11/6/15 18:06	MW&C	P5K0076
Benzene	BRL.	mg/kg dry	0,0034	0.00033	1	8260B	11/6/15 18:06	MW&C	P5K0076
Bromobenzene	BRL	mg/kg dry	0.0057	0.00047	1	8260B	11/6/15 18:06	MW&C	P5K0076
Bromochloromethane	BRL	mg/kg dry	0.0057	0.00031	1	8260B	11/6/15 18:06	MW&C	P5K0076
Bromodichloromethane	BRL	mg/kg dry	0.0057	0.00032	1	8260B	11/6/15 18:06	MW&C	P5K0076
Bromoform	BRL	mg/kg dry	0.0057	0.00064	1	8260B	11/6/15 18:06	MW&C	P5K0076
Bromomethane	BRL	mg/kg dry	0.011	0.00070	1	8260B	11/6/15 18:06	MW&C	P5K0076
Carbon Tetrachloride	BRL	mg/kg dry	0.0057	0.00028	1	8260B	11/6/15 18:06	MW&C	P5K0076
Chlorobenzene	BRL	mg/kg dry	0.0057	0.00030	1	8260B	11/6/15 18:06	MW&C	P5K0076
Chloroethane	BRL	mg/kg dry	0.011	0.00047	1	8260B	11/6/15 18:06	MW&C	P5K0076
Chloroform	BRL	mg/kg dry	0.0057	0.00041	1	8260B	11/6/15 18:06	MW&C	P5K0076
Chloromethane	BRL	mg/kg dry	0.0057	0.00038	1	8260B	11/6/15 18:06	MW&C	P5K0076
cis-1,2-Dichloroethylene	BRL	mg/kg dry	0.0057	0.00024	1	8260B	11/6/15 18:00	MW&C	P5K0076
cis-1,3-Dichloropropylene	BRL	mg/kg dry	0.0057	0.00019	1	8260B	11/6/15 18:06	MW&C	P5K0076
Dibromochloromethane	BRL	mg/kg dry	0.0057	0.00023	1	8260B	11/6/15 18:06	MW&C	P5K0076
Dichlorodifluoromethane	BRL CVL	mg/kg dry	0.0057	0.00026	1	8260B	11/6/15 18:00	6 MW&C	P5K0076
Ethylbenzene	BRL	mg/kg dry	0.0057	0.00022	1	8260B	11/6/15 18:06		(P5K0076
Isopropyl Ether	BRL	mg/kg dry	0.0057	0.00023		8260B	11/6/15 18:00	6 MW&C	P5K0076
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0057	0.00033		8260B	11/6/15 18:00		(P5K0076
m,p-Xylenes	BRL	mg/kg dry	0.011	0.00052		8260B	11/6/15 18:00		(P5K007
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.057	0.00051		8260B	11/6/15 18:00		(P5K0076
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.11	0.00051	1	8260B	11/6/15 18:00		(P5K007
Methyl Isobutyl Ketone	BRL	mg/kg dry	0.057	0.00048		8260B	11/6/15 18:0		(P5K007
Methylene Chloride	BRL	mg/kg dry	0.0057	0.00032		8260B	11/6/15 18:0		(P5K007
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.011	0.00018		8260B	11/6/15 18:0		(P5K007
Naphthalene	BRL	mg/kg dry	0.011	0.00018		8260B	11/6/15 18:0		(P5K007
n-Butylbenzene	BRL	mg/kg dry	0.0057	0.00029		8260B	11/6/15 18:0		(P5K007
n-Propylbenzene	BRL.	mg/kg dry	0.0057	0.00023		8260B	11/6/15 18:0		(P5K007
o-Xylene	BRL	mg/kg dry	0.0057	0.00034		8260B	11/6/15 18:0		(P5K007
sec-Butylbenzene	BRL			0.00023		8260B	11/6/15 18:0		(P5K007
Styrene	BRL	mg/kg dry	0.0057				11/6/15 18:0		(P5K007
tert-Butylbenzene	BRL	mg/kg dry	0.0057	0.00034		8260B			(P5K007
•		mg/kg dry	0.0057	0.00019		8260B	11/6/15 18:0		(P5K007
Tetrachloroethylene	BRL	mg/kg dry	0.0057	0.00027		8260B	11/6/15 18:0		
Toluene	BRL	mg/kg dry	0.0057	0.00032		8260B	11/6/15 18:0		(P5K007
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0057	0.00034		8260B	11/6/15 18:0		(P5K007
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0057	0.00030) 1	8260B	11/6/15 18:0		(P5K007
Trichloroethylene	BRL	mg/kg dry	0.0057	0.00037	7 1	8260B	11/6/15 18:0	6 MW&C	C P5K007

Cardno - Charlotte

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-4 (5-7) Prism Sample ID: 5110128-04 Prism Work Order: 5110128

Time Collected: 11/04/15 10:55 Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis A Date/Time	nalyst Batch ID
Trichlorofluoromethane	BRL	mg/kg dry	0.0057	0.00037	1	8260B	11/6/15 18:06	MW&C(P5K0076
Vinyl acetate	BRL	mg/kg dry	0.028	0.00077	1	8260B	11/6/15 18:06	MW&C(P5K0076
Vinyl chloride	BRL	mg/kg dry	0.0057	0.00027	1	8260B	11/6/15 18:06	MW&C(P5K0076
Xylenes, total	BRL	mg/kg dry	0.017	0.0011	1	8260B	11/6/15 18:06	MW&C(P5K0076

Surrogate	Recovery	Control Limits
4-Bromofluorobenzene	100 %	70-130
Dibromofluoromethane	104 %	84-123
Toluene-d8	99 %	76-129

Cardno - Charlotte Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-3 (0-1)
Prism Sample ID: 5110128-05
Prism Work Order: 5110128
Time Collected: 11/04/15 11:45

Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis / Date/Time	nalyst	Batch ID
General Chemistry Parameters									
% Solids	77.8	% by Weight	0.100	0.100	1	*SM2540 G	11/9/15 14:45	ARC	P5K0169
Semivolatile Organic Compound	ds by GC/MS								
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.42	0.066	1	.8270D	11/10/15 17:50	JM∨	P5K0151
1,2-Dichlorobenzene	BRL	mg/kg dry	0.42	0.064	1	8270D	11/10/15 17:50) JM∨	P5K0151
1,3-Dichlorobenzene	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 17:50) JM∨	P5K0151
1,4-Dichlorobenzene	BRL	mg/kg dry	0.42	0.062	1	8270D	11/10/15 17:50) JMV	P5K0151
1-Methylnaphthalene	0.34 J	mg/kg dry	0.42	0.082	· 1	8270D	11/10/15 17:50	JMV	P5K0151
2,4,6-Trichlorophenol	BRL	mg/kg dry	0.42	0.080	1	8270D	11/10/15 17:50	JM∨	P5K0151
2,4-Dichlorophenol	BRL	mg/kg dry	0.42	0.082	1	8270D	11/10/15 17:50	JM∨	P5K0151
2,4-Dimethylphenol	BRL	mg/kg dry	0.42	0.065	1	8270D	11/10/15 17:50	JM∨	P5K0151
2,4-Dinitrophenol	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 17:5) JMV	P5K0151
2,4-Dinitrotoluene	BRL	mg/kg dry	0.42	0.052	1	8270D	11/10/15 17:5	JM∨	P5K0151
2,6-Dinitrotoluene	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 17:5	JM∨	P5K0151
2-Chloronaphthalene	BRL	mg/kg dry	0.42	0.061	1	8270D	11/10/15 17:5	JMV	P5K0151
2-Chlorophenol	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 17:5	JM∨	P5K0151
2-Methylnaphthalene	0.42	mg/kg dry	0.42	0.068	1	8270D	11/10/15 17:50	VMC (P5K0151
2-Methylphenol	BRL	mg/kg dry	0.42	0.054	1	8270D	11/10/15 17:5	∨ML c	P5K0151
2-Nitrophenol	BRL	mg/kg dry	0.42	0.077	1	8270D	11/10/15 17:5	VML c	P5K0151
3,3'-Dichlorobenzidine	BRL	mg/kg dry	0.42	0.084	1	8270D	11/10/15 17:5	JM∨	P5K0151
3/4-Methylphenol	BRL	mg/kg dry	0.42	0.052	1	8270D	11/10/15 17:5	0 JMV	P5K0151
4,6-Dinitro-2-methylphenol	BRL	mg/kg dry	0.42	0.064	1	8270D	11/10/15 17:5	o JM∨	P5K0151
4-Bromophenyl phenyl ether	BRL	mg/kg dry	0.42	0.073	1	8270D	11/10/15 17:5	o JM∨	P5K0151
4-Chloro-3-methylphenol	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 17:5	o JM∨	P5K0151
4-Chloroaniline	BRL	mg/kg dry	0.42	0.051	1	8270D	11/10/15 17:5	0 JMV	P5K0151
4-Chlorophenyl phenyl ether	BRL	mg/kg dry	0.42	0.055	1	8270D	11/10/15 17:5	0 JM∨	P5K0151
4-Nitrophenol	BRL	mg/kg dry	0.42	0.065	1	8270D	11/10/15 17:5	o JM∨	P5K0151
Acenaphthene	2.5	mg/kg dry	0.42	0.058	1	8270D	11/10/15 17:5	JMV	P5K0151
Acenaphthylene	0.13 J	mg/kg dry	0.42	0.061	1	8270D	11/10/15 17:5) JMV	P5K0151
Anthracene	4.4	mg/kg dry	0.42	0.068	1	8270D	11/10/15 17:5	JMV	P5K0151
Azobenzene	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 17:5	o JMV	P5K0151
Benzo(a)anthracene	12	mg/kg dry	2.1	0.28	5	8270D	11/12/15 0:36	JMV	P5K0151
Benzo(a)pyrene	11	mg/kg dry	2.1	0.23	5	8270D	11/12/15 0:36	JMV	P5K0151
Benzo(b)fluoranthene	11	mg/kg dry	2.1	0.25	5	8270D	11/12/15 0:36		P5K0151
Benzo(g,h,i)perylene	6.8	mg/kg dry	0.42	0.047	1	8270D	11/10/15 17:5		P5K015
Benzo(k)fluoranthene	4.2	mg/kg dry	0.42	0.056	1	8270D	11/10/15 17:5		P5K015
Benzoic Acid	BRL	mg/kg dry	0.42	0.036	1	8270D	11/10/15 17:5		P5K015
Benzyl alcohol	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 17:5		P5K015
bis(2-Chloroethoxy)methane	BRL	mg/kg dry	0.42	0.036		8270D 8270D	11/10/15 17:5		P5K015
Bis(2-Chloroethyl)ether	BRL	mg/kg dry	0.42	0.060		8270D	11/10/15 17:5		P5K015
Bis(2-chloroisopropyl)ether	BRL	mg/kg dry	0.42	0.072		8270D	11/10/15 17:5		P5K015
Bis(2-Ethylhexyl)phthalate	BRL	mg/kg dry	0.42	0.072		8270D	11/10/15 17:5		P5K015

Analyst

Analysis

Date/Time

Batch

ID

Cardno - Charlotte Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Parameter

Project: Kesler Mill (Brownfield)

Units

Sample Matrix: Solid

Result

Client Sample ID: GW-3 (0-1) Prism Sample ID: 5110128-05 Prism Work Order: 5110128 Time Collected: 11/04/15 11:45

Time Submitted: 11/05/15 16:40

Method

Dilution

Factor

MDL

Report

Limit

Butyl benzyl phthalate	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15	17:50	JM∨	P5K0151
Chrysene	9.8	mg/kg dry	2.1	0.27	5	8270D	11/12/15	0:36	JMV	P5K0151
Dibenzo(a,h)anthracene	1.5	mg/kg dry	0.42	0.052	1	8270D	11/10/15	17:50	JMV	P5K0151
Dibenzofuran	0.80	mg/kg dry	0.42	0.064	1	8270D	11/10/15	17:50	JMV	P5K0151
Diethyl phthalate	BRL	mg/kg dry	0.42	0.058	1	8270D	11/10/15	17:50	JMV	P5K0151
Dimethyl phthalate	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15	17:50	JMV	P5K0151
Di-n-butyl phthalate	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15	17:50	JMV	P5K0151
Di-n-octyl phthalate	BRL	mg/kg dry	0.42	0.052	1	8270D	11/10/15	17:50	JM∨	P5K0151
Fluoranthene	21	mg/kg dry	2.1	0.27	5	8270D	11/12/15	0:36	JMV	P5K0151
Fluorene	1.5	mg/kg dry	0.42	0.061	1	8270D	11/10/15	17:50	JMV	P5K0151
Hexachlorobenzene	BRL	mg/kg dry	0.42	0.067	1	8270D	11/10/15	17:50	JM∨	P5K0151
Hexachlorobutadiene	BRL	mg/kg dry	0.42	0.076	1	8270D	11/10/15	17:50	JM∨	P5K0151
Hexachlorocyclopentadiene	BRL	mg/kg dry	0.42	0.076	1	8270D	11/10/15	17:50	JM∨	P5K0151
Hexachloroethane	BRL	mg/kg dry	0.42	0.071	1	8270D	11/10/15	17:50	JM∨	P5K0151
Indeno(1,2,3-cd)pyrene	7.3	mg/kg dry	0.42	0.049	1	8270D	11/10/15	17:50	JMV	P5K0151
Isophorone	BRL	mg/kg dry	0.42	0.057	1	8270D	11/10/15	17:50	JMV	P5K0151
Naphthalene	0.51	mg/kg dry	0.42	0.068	1	8270D	11/10/15	17:50	JMV	P5K0151
Nitrobenzene	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15	17:50	JMV	P5K0151
N-Nitroso-di-n-propylamine	BRL	mg/kg dry	0.42	0.067	1	8270D	11/10/15	17:50	jΜV	P5K0151
N-Nitrosodiphenylamine	BRL	mg/kg dry	0.42	0.064	1	8270D	11/10/15	17:50	JMV	P5K0151
Pentachlorophenol	BRL	mg/kg dry	0.42	0.050	1	8270D	11/10/15	17:50	VML	P5K0151
Phenanthrene	14	mg/kg dry	2.1	0.28	5	8270D	11/12/15	0:36	JMV	P5K0151
Phenol	BRL	mg/kg dry	0.42	0.063	1	8270D	11/10/15	17:50	JMV	P5K0151
Pyrene	18	mg/kg dry	2.1	0.28	5	8270D	11/12/15	0:36	JM∨	P5K0151
			Surrogate			Reco	very		Control L	imits
			2,4,6-Tribro	mophenol		7:	3 %		39-132	
			2-Fluorobip	henyl		77	7 %		44-115	
			2-Fluoroph	enol		73	3 %		35-115	
•			Nitrobenzei	ne-d5		7:	1 %		37-122	
•			Phenol-d5			74	4 %		34-121	
			Terphenyl-	114		. 86	5 %		54-127	
Volatile Organic Compounds by GC	C/MS									
1,1,1,2-Tetrachloroethane	BRL	mg/kg dry	0.0049	0.00040	1	8260B	11/6/15 1	8:33	MW&C	(P5K0076
1,1,1-Trichloroethane	BRL	mg/kg dry	0.0049	0.00024	1	8260B	11/6/15 1	8:33		;(P5K0076
1,1,2,2-Tetrachloroethane			0.0049	0.00033	1	8260B	11/6/15 1	8:33		C P5K0076
1 1 2 Trichlomethane	BRL	mg/kg dry	0.0049	0.000						
1, 1,2-1 inclidite	BRL BRL	mg/kg ary mg/kg dry	0.0049	0.00043	1	8260B	11/6/15 1	8:33		
					1	8260B 8260B	11/6/15 1 11/6/15 1		MW&C	C.P5K0076
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene	BRL	mg/kg dry	0.0049	0.00043	•			8:33	MW&C	;(P5K0076 ;(P5K0076
1,1-Dichloroethane 1,1-Dichloroethylene	BRL BRL	mg/kg dry mg/kg dry	0.0049 0.0049	0.00043 0.00014	1	8260B	11/6/15 1	8:33 8:33	MW&C MW&C	;(,P5K0076 ;(P5K0076 ;(P5K0076
1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropylene	BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry	0.0049 0.0049 0.0049	0.00043 0.00014 0.00022	1	8260B 8260B	11/6/15 1 11/6/15 1	8:33 8:33 8:33	MW&C MW&C	;(,P5K0076 ;(P5K0076 ;(P5K0076
1,1-Dichloroethane	BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.0049 0.0049 0.0049 0.0049	0.00043 0.00014 0.00022 0.00027	1 1 1	8260B 8260B 8260B	11/6/15 1 11/6/15 1 11/6/15 1	8:33 8:33 8:33 8:33	MW&C MW&C MW&C MW&C	2 P5K0076 2 P5K0076 2 P5K0076 3 P5K0076 3 P5K0076 3 P5K0076

		•
•		

11/19/2015

Cardno - Charlotte Attn: Christine Schaefer 7606 Whitehall Executive Center Drive, Suite Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-3 (0-1)
Prism Sample ID: 5110128-05
Prism Work Order: 5110128
Time Collected: 11/04/15 11:45
Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0049	0.00037	1	8260B	11/6/15 18:33	MW&C(P5K0076
,2-Dibromoethane	BRL	mg/kg dry	0.0049	0.00020	1	8260B	11/6/15 18:33	MW&C(P5K0076
,2-Dichlorobenzene	BRL	mg/kg dry	0.0049	0.00023	. 1	8260B	11/6/15 18:33	MW&C0	P5K0076
,2-Dichloroethane	BRL	mg/kg dry	0.0049	0.00029	1	8260B	11/6/15 18:33	MW&C0	P5K0076
,2-Dichloropropane	BRL	mg/kg dry	0.0049	0.00030	1	8260B	11/6/15 18:33	MW&C0	P5K0076
,3,5-Trimethylbenzene	BRL	mg/kg dry	0.0049	0.00037	1	8260B	11/6/15 18:33	MW&C0	P5K0076
,3-Dichlorobenzene	BRL	mg/kg dry	0.0049	0.00032	1	8260B	11/6/15 18:33	MW&C0	P5K0076
,3-Dichloropropane	BRL	mg/kg dry	0.0049	0.00024	1	8260B	11/6/15 18:33	MW&C	P5K0076
,4-Dichlorobenzene	BRL	mg/kg dry	0.0049	0.00019	1	8260B	11/6/15 18:33	MW&C	P5K0076
2,2-Dichloropropane	BRL	mg/kg dry	0.0049	0.00023	1	8260B	11/6/15 18:33	MW&C	P5K0076
2-Chlorotoluene	BRL	mg/kg dry	0.0049	0.00025	1	8260B	11/6/15 18:33	MW&C	P5K0076
l-Chlorotoluene	BRL	mg/kg dry	0.0049	0.00029	1	8260B	11/6/15 18:33	MW&C	P5K0076
l-Isopropyltoluene	BRL	mg/kg dry	0.0049	0.00023	1	8260B	11/6/15 18:33	MW&C	P5K0076
Acetone	BRL	mg/kg dry	0.049	0.0012	1	8260B	11/6/15 18:33	MW&C	P5K0076
Benzene	BRL	mg/kg dry	0.0029	0.00028	1	8260B	11/6/15 18:33	MW&C	P5K0076
Bromobenzene	BRL	mg/kg dry	0.0049	0.00041	1	8260B	11/6/15 18:33	MW&C	P5K0076
3romochloromethane	BRL	mg/kg dry	0.0049	0.00027	1	8260B	11/6/15 18:33	MW&C	P5K0076
Bromodichloromethane	BRL	mg/kg dry	0.0049	0.00027	1	8260B	11/6/15 18:33	MW&C	P5K0076
Bromoform	BRL	mg/kg dry	0.0049	0.00055	1	8260B	11/6/15 18:33	MW&C	P5K0076
3romomethane	BRL	mg/kg dry	0.0097	0.00060	1	8260B	11/6/15 18:33	MW&C	P5K0076
Carbon Tetrachloride	BRL	mg/kg dry	0.0049	0.00024	1	8260B	11/6/15 18:33	MW&C	P5K0076
Chlorobenzene	BRL	mg/kg dry	0.0049	0.00026	1	8260B	11/6/15 18:33	MW&C	P5K0076
Chloroethane	BRL	mg/kg dry	0.0097	0.00041	1	8260B	11/6/15 18:33	MW&C	P5K007
Chloroform	BRL	mg/kg dry	0.0049	0.00035	1	8260B	11/6/15 18:33	MW&C	P5K007
Chloromethane	BRL	mg/kg dry	0.0049	0.00033	1	8260B	11/6/15 18:33	MW&C	P5K007
cis-1,2-Dichloroethylene	BRL	mg/kg dry	0.0049	0.00021	1	8260B	11/6/15 18:33	MW&C	P5K007
cis-1,3-Dichloropropylene	BRL	mg/kg dry	0.0049	0.00016		8260B	11/6/15 18:33		(P5K007
Dibromochloromethane	BRL	mg/kg dry	0.0049	0.00020		8260B	11/6/15 18:33		(P5K007
Dichlorodifluoromethane	BRL CVL	mg/kg dry	0.0049	0.00022		8260B	11/6/15 18:33		(P5K007
Ethylbenzene	BRL	mg/kg dry	0.0049	0.00019		8260B	11/6/15 18:33	3 MW&C	(P5K007
Isopropyl Ether	BRL	mg/kg dry	0.0049	0.00020		8260B	11/6/15 18:33		(P5K007
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0049	0.00029		8260B	11/6/15 18:3		(P5K007
m,p-Xylenes	BRL	mg/kg dry	0.0097	0.00045		8260B	11/6/15 18:3:		(P5K007
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.049	0.00044		8260B	11/6/15 18:3:	-	P5K007
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.097	0.00044		8260B	11/6/15 18:3:		· (P5K007
Methyl Isobutyl Ketone	BRL	mg/kg dry	0.049	0.00044		8260B	11/6/15 18:3		(P5K007
Methylene Chloride	BRL	mg/kg dry	0.0049	0.00042		8260B	11/6/15 18:3		· (P5K007
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.0049	0.00027		8260B	11/6/15 18:3		(P5K007
Naphthalene	BRL	mg/kg dry	0.0097	0.00015		8260B	11/6/15 18:3		(P5K007
n-Butylbenzene	BRL	mg/kg dry	0.0049	0.00015		8260B	11/6/15 18:3		(P5K007
n-Propylbenzene	BRL	mg/kg dry	0.0049	0.00029		8260B	11/6/15 18:3		(P5K007
o-Xylene	BRL	mg/kg dry	0.0049	0.00028		8260B	11/6/15 18:3		(P5K007
sec-Butylbenzene	BRL	mg/kg dry	0.0049	0.00020		8260B	11/6/15 18:3		(P5K007

Cardno - Charlotte

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-3 (0-1) Prism Sample ID: 5110128-05 Prism Work Order: 5110128 Time Collected: 11/04/15 11:45

Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis / Date/Time	Analyst Batch ID
Styrene	BRL	mg/kg dry	0.0049	0.00029	1	8260B	11/6/15 18:33	MW&C(P5K007
tert-Butylbenzene	BRL	mg/kg dry	0.0049	0.00016	1	8260B	11/6/15 18:33	MW&C(P5K007
Tetrachloroethylene	BRL	mg/kg dry	0.0049	0.00023	1	8260B	11/6/15 18:33	MW&C(P5K007
Toluene	BRL	mg/kg dry	0.0049	0.00028	1	8260B	11/6/15 18:33	MW&C(P5K007
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0049	0.00029	1	8260B	11/6/15 18:33	MW&C(P5K007
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0049	0.00026	1	8260B	11/6/15 18:33	MW&C(P5K007
Trichloroethylene	BRL	mg/kg dry	0.0049	0.00032	1	8260B	11/6/15 18:33	MW&C(P5K007
Trichlorofluoromethane	BRL	mg/kg dry	0.0049	0.00031	1	8260B	11/6/15 18:33	MW&C(P5K007
Vinyl acetate	BRL	mg/kg dry	0.024	0.00067	1	8260B	11/6/15 18:33	MW&C(P5K007
Vinyl chloride	BRL	mg/kg dry	0.0049	0.00024	1	8260B	11/6/15 18:33	MW&C(P5K007
Xylenes, total	BRL	mg/kg dry	0.015	0.00091	1	8260B	11/6/15 18:33	MW&C(P5K007

Surrogate	Recovery	Control Limits
4-Bromofluorobenzene	101 %	70-130
Dibromofluoromethane	103 %	84-123
Toluene-d8	99 %	76-129

Cardno - Charlotte Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-3 (4-6) Prism Sample ID: 5110128-06 Prism Work Order: 5110128

Time Collected: 11/04/15 11:55 Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analysis Analysis	nalyst	Batch ID
General Chemistry Parameters									
% Solids	69.5	% by Weight	0.100	0.100	1	*SM2540 G	11/9/15 14:45	ARC	P5K016
Semivolatile Organic Compoun	ds by GC/MS	worgine							
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.47	0.074	1	8270D	11/10/15 16:42	JMV	P5K015
1,2-Dichlorobenzene	BRL	mg/kg dry	0.47	0.072	1	8270D	11/10/15 16:42	JMV	P5K015
1,3-Dichlorobenzene	BRL	mg/kg dry	0.47	0.067	1	8270D	11/10/15 16:42	JMV	P5K015
1,4-Dichlorobenzene	BRL	mg/kg dry	0.47	0.069	1	8270D	11/10/15 16:42	JM∨	P5K015
1-Methylnaphthalene	BRL	mg/kg dry	0.47	0.091	1	8270D	11/10/15 16:42	JM∨	P5K01
2,4,6-Trichlorophenol	BRL	mg/kg dry	0.47	0.089	1	8270D	11/10/15 16:42	JM∨	P5K01
2,4-Dichlorophenol	BRL	mg/kg dry	0.47	0.092	1	8270D	11/10/15 16:42	JM∨	P5K01
2,4-Dimethylphenol	BRL	mg/kg dry	0.47	0.073	1	8270D	11/10/15 16:42	JM∨	P5K01
2,4-Dinitrophenol	BRL	mg/kg dry	0.47	0.066	1	8270D	11/10/15 16:42	JM∨	P5K01
2,4-Dinitrotoluene	BRL	mg/kg dry	0.47	0.058	1	8270D	11/10/15 16:42	JM∨	P5K01
2,6-Dinitrotoluene	BRL	mg/kg dry	0.47	0.063	1	8270D	11/10/15 16:42	JM∨	P5K01
2-Chloronaphthalene	BRL	mg/kg dry	0.47	0.069	1	8270D	11/10/15 16:42	JM∨	P5K01
2-Chlorophenol	BRL	mg/kg dry	0.47	0.067	1	8270D	11/10/15 16:42	JMV	P5K01
2-Methylnaphthalene	0.14 J	mg/kg dry	0.47	0.076	. 1	8270D	11/10/15 16:42	JMV	P5K01
2-Methylphenol	BRL	mg/kg dry	0.47	0.061	1	8270D	11/10/15 16:42	JMV	P5K01
2-Nitrophenol	BRL	mg/kg dry	0.47	0.086	1	8270D	11/10/15 16:42		P5K01
3,3'-Dichlorobenzidine	BRL	mg/kg dry	0.47	0.094	. 1	8270D	11/10/15 16:42		P5K01
3/4-Methylphenol	BRL	mg/kg dry	0.47	0.058	1	8270D	11/10/15 16:42		P5K01
4,6-Dinitro-2-methylphenol	BRL	mg/kg dry	0.47	0.071	1	8270D	11/10/15 16:42		P5K01
4-Bromophenyl phenyl ether	BRL	mg/kg dry	0.47	0.081	1	8270D	11/10/15 16:42		P5K01
4-Chloro-3-methylphenol	BRL	mg/kg dry	0.47	0.067	1	8270D	11/10/15 16:42		P5K01
4-Chloroaniline	BRL	mg/kg dry	0.47	0.057	1	8270D	11/10/15 16:42		P5K01
4-Chlorophenyl phenyl ether	BRL	mg/kg dry	0.47	0.062	1	8270D	11/10/15 16:42		P5K01
4-Nitrophenol	BRL	mg/kg dry	0.47	0.073	1	8270D	11/10/15 16:42		P5K01
Acenaphthene	0.51	mg/kg dry	0.47	0.064	1	8270D	11/10/15 16:42		P5K01
Acenaphthylene	BRL	mg/kg dry	0.47	0.069	1	8270D	11/10/15 16:42		P5K01
Anthracene	0.83					8270D	11/10/15 16:42		P5K01
Azobenzene	BRL	mg/kg dry	0.47	0.076	1		11/10/15 16:42		P5K01
		mg/kg dry	0.47	0.063	1	8270D			P5K01
Benzo(a)anthracene	1.6	mg/kg dry	0.47	0.062	1	8270D	11/10/15 16:42		
Benzo(a)pyrene	1.4	mg/kg dry	0.47	0.051	1	8270D	11/10/15 16:42		P5K01
Benzo(b)fluoranthene	0.25 J	mg/kg dry	0.47	0.055	1	8270D	11/10/15 16:42	JMV	P5K01
Benzo(g,h,i)perylene	0.76	mg/kg dry	0.47	0.052	1	8270D	11/10/15 16:42	JMV	P5K01
Benzo(k)fluoranthene	0.27 J	mg/kg dry	0.47	0.062	1	8270D	11/10/15 16:42	JMV	P5K01
Benzoic Acid	BRL	mg/kg dry	0.47	0.040	1	8270D	11/10/15 16:42	2 JMV	P5K01
Benzyl alcohol	BRL	mg/kg dry	0.47	0.062	1	8270D	11/10/15 16:42	2 JM∨	P5K01
bis(2-Chloroethoxy)methane	BRL	mg/kg dry	0.47	0.082	1	8270D	11/10/15 16:42	2 JMV	P5K0
Bis(2-Chloroethyl)ether	BRL	mg/kg dry	0.47	0.067	1	8270D	11/10/15 16:42	2 JMV	P5K01
Bis(2-chloroisopropyl)ether	BRL	mg/kg dry	0.47	0.081	1	8270D	11/10/15 16:42	2 JMV	P5K01
Bis(2-Ethylhexyl)phthalate	BRL	mg/kg dry	0.47	0.070	1	8270D	11/10/15 16:42	2 JMV	P5K0

Cardno - Charlotte Attn: Christine Schaefer 7606 Whitehall Executive Center Drive, Suite Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-3 (4-6) Prism Sample ID: 5110128-06 Prism Work Order: 5110128 Time Collected: 11/04/15 11:55 Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Butyl benzyl phthalate	BRL	mg/kg dry	0.47	0.068	1	8270D	11/10/15 16:4:	2 JM∨	P5K0151
Chrysene	1.4	mg/kg dry	0.47	0.060	1	8270D	11/10/15 16:42	2 JMV	P5K0151
Dibenzo(a,h)anthracene	0.19 J	mg/kg dry	0.47	0.058	1	8270D	11/10/15 16:42	2 JMV	P5K0151
Dibenzofuran	0.24 J	mg/kg dry	0.47	0.072	1	8270D	11/10/15 16:42	2 JMV	P5K0151
Diethyl phthalate	BRL	mg/kg dry	0.47	0.065	1	8270D	11/10/15 16:4:	2 JMV	P5K0151
Dimethyl phthalate	BRL	mg/kg dry	0.47	0.063	1	8270D	11/10/15 16:4:	2 JMV	P5K0151
Di-n-butyl phthalate	BRL	mg/kg dry	0.47	0.067	1	8270D	11/10/15 16:4:	2 JMV	P5K0151
Di-n-octyl phthalate	BRL	mg/kg dry	0.47	0.058	1	8270D	11/10/15 16:4:	2 JMV	P5K0151
Fluoranthene	3.5	mg/kg dry	0.47	0.060	1	8270D	11/10/15 16:42	JMV	P5K0151
Fluorene	0.33 J	mg/kg dry	0.47	0.068	1	8270D	11/10/15 16:42	JMV	P5K0151
Hexachlorobenzene	BRL	mg/kg dry	0.47	0.075	1	8270D	11/10/15 16:4:	2 JMV	P5K0151
Hexachlorobutadiene	BRL	mg/kg dry	0.47	0.085	1	8270D	11/10/15 16:4:	2 JMV	P5K0151
Hexachlorocyclopentadiene	BRL	mg/kg dry	0.47	0.085	1	8270D	11/10/15 16:4:	2 JMV	P5K0151
Hexachloroethane	BRL	mg/kg dry	0.47	0.079	1	8270D	11/10/15 16:4:	2 JMV	P5K0151
Indeno(1,2,3-cd)pyrene	0.84	mg/kg dry	0.47	0.054	1	8270D	11/10/15 16:42	JMV	P5K0151
Isophorone	BRL	mg/kg dry	0.47	0.064	1	8270D	11/10/15 16:4:	2 JMV	P5K0151
Naphthalene	0.18 J	mg/kg dry	0.47	0.076	1	8270D	11/10/15 16:42	2 JMV	P5K0151
Nitrobenzene	BRL	mg/kg dry	0.47	0.067	1	8270D	11/10/15 16:4:	2 JMV	P5K0151
N-Nitroso-di-n-propylamine	BRL	mg/kg dry	0.47	0.075	1	8270D	11/10/15 16:42	2 JMV	P5K0151
N-Nitrosodiphenylamine	BRL	mg/kg dry	0.47	0.072	1	8270D	11/10/15 16:42	2 JMV	P5K0151
Pentachlorophenol	BRL	mg/kg dry	0.47	0.056	1	8270D	11/10/15 16:4:	2 JMV	P5K0151
Phenanthrene	3.1	mg/kg dry	0.47	0.062	1	8270D	11/10/15 16:42	JMV	P5K0151
Phenol	BRL	mg/kg dry	0.47	0.070	1	8270D	11/10/15 16:42	2 JMV	P5K0151
Pyrene	2.8	mg/kg dry	0.47	0.063	1	8270D	11/10/15 16:42	JMV	P5K0151
		.,,,	Surrogate			Recov	/ery	Control	Limits
			2,4,6-Tribror	nophenol		80) %	39-132	
			2-Fluorobiph	enyi		77	7 %	44-115	
			2-Fluorophe	nol		72	? %	<i>35-115</i>	
			Nitrobenzen	e-d5		70	%	37-122	
			Phenol-d5			74	‡ %	34-121	
			Terphenyl-d	14		79	9 %	54-127	
Volatile Organic Compounds by G	C/MS								
1,1,1,2-Tetrachloroethane	BRL	mg/kg dry	0.0053	0.00043	1	8260B	11/6/15 19:01		C P5K0076
1,1,1-Trichloroethane	BRL	mg/kg dry	0.0053	0.00025	1	8260B	11/6/15 19:01		C P5K0076
1,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0053	0.00036	1	8260B	11/6/15 19:01		C P5K0076
1,1,2-Trichloroethane	BRL	mg/kg dry	0.0053	0.00047	1	8260B	11/6/15 19:01		C P5K0076
1,1-Dichloroethane	BRL	mg/kg dry	0.0053	0.00015	1	8260B	11/6/15 19:01		C P5K0076
1,1-Dichloroethylene	BRL	mg/kg dry	0.0053	0.00023	1	8260B	11/6/15 19:01		C P5K0076
1,1-Dichloropropylene	BRL	mg/kg dry	0.0053	0.00029	1	8260B	11/6/15 19:01		C P5K0076
1,2,3-Trichlorobenzene	BRL.	mg/kg dry	0.0053	0.00030	1	8260B	11/6/15 19:01		C P5K0076
1,2,3-Trichloropropane	BRL	mg/kg d ry	0.0053	0.00067	1	8260B	11/6/15 19:01		C P5K0076

Cardno - Charlotte Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-3 (4-6) Prism Sample ID: 5110128-06

Prism Work Order: 5110128 Time Collected: 11/04/15 11:55 Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
1,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0053	0.00040	1	8260B	11/6/15 19:01	MW&C(P5K0076
1,2-Dibromoethane	BRL	mg/kg dry	0.0053	0.00021	1	8260B	11/6/15 19:01		P5K0076
1,2-Dichlorobenzene	BRL	mg/kg dry	0.0053	0.00025	1	8260B	11/6/15 19:01	MW&C	P5K0076
1,2-Dichļoroethane	BRL	mg/kg dry	0.0053	0.00031	1	8260B	11/6/15 19:01	MW&C	P5K0076
I,2-Dichloropropane	BRL	mg/kg dry	0.0053	0.00033	1.	8260B	11/6/15 19:01	MW&C	P5K0076
1,3,5-Trimethylbenzene	BRL	mg/kg dry	0.0053	0.00040	1	8260B	11/6/15 19:01	MW&C	P5K0076
1,3-Dichlorobenzene	BRL	mg/kg dry	0.0053	0.00035	1	8260B	11/6/15 19:01	1 MW&C0	P5K0076
1,3-Dichloropropane	BRL	mg/kg dry	0.0053	0.00026	. 1	8260B	11/6/15 19:01	1 MW&C	P5K0076
1,4-Dichlorobenzene	BRL	mg/kg dry	0.0053	0.00021	1	8260B	11/6/15 19:0	1 MW&C	P5K0076
2,2-Dichloropropane	BRL	mg/kg dry	0.0053	0.00025	1	8260B	11/6/15 19:0	1 MW&C	P5K0076
2-Chlorotoluene	BRL	mg/kg dry	0.0053	0.00027	1	8260B	11/6/15 19:0	1 MW&C	P5K0076
4-Chlorotoluene	BRL	mg/kg dry	0.0053	0.00031	1	8260B	11/6/15 19:0	1 MW&C	P5K0076
4-Isopropyltoluene	BRL	mg/kg dry	0.0053	0.00025	1	8260B	11/6/15 19:0	1 MW&C	P5K0076
Acetone	BRL	mg/kg dry	0.053	0.0013	1	8260B	11/6/15 19:0	1 MW&C	P5K0076
Benzene	BRL	mg/kg dry	0.0032	0.00031	1	8260B	11/6/15 19:0	1 MW&C	P5K0076
Bromobenzene	BRL	mg/kg dry	0.0053	0.00044	1	8260B	11/6/15 19:0	1 MW&C	P5K0076
Bromochloromethane	BRL	mg/kg dry	0.0053	0.00029	1	8260B	11/6/15 19:0	1 MW&C	P5K0076
Bromodichloromethane	BRL	mg/kg dry	0.0053	0.00029	1	8260B	11/6/15 19:0	1 MW&C	P5K0076
Bromoform	BRL	mg/kg dry	0.0053	0.00060	1	8260B	11/6/15 19:0	1 MW&C	P5K0076
3romomethane	BRL	mg/kg dry	0.011	0.00065	1	8260B	11/6/15 19:0	1 MW&C	P5K0076
Carbon Tetrachloride	BRL	mg/kg dry	0.0053	0.00026	1	8260B	11/6/15 19:0	1 MW&C	P5K0076
Chlorobenzene	BRL	mg/kg dry	0.0053	0.00028	1	8260B	11/6/15 19:0	1 MW&C	P5K0076
Chloroethane	BRL	mg/kg dry	0.011	0.00044	1	8260B	11/6/15 19:0	1 MW&C	P5K0076
Chloroform	BRL	mg/kg dry	0.0053	0.00038	1	8260B	11/6/15 19:0	1 MW&C	(P5K0076
Chloromethane	BRL	mg/kg dry	0.0053	0.00035	1	8260B	11/6/15 19:0	1 MW&C	(P5K0076
cis-1,2-Dichloroethylene	BRL	mg/kg dry	0.0053	0.00022	1	8260B	11/6/15 19:0	1 MW&C	(P5K0076
cis-1,3-Dichloropropylene	BRL	mg/kg dry	0.0053	0.00018	1	82608	11/6/15 19:0		(P5K0076
Dibromochloromethane	BRL	mg/kg dry	0.0053	0.00022	: 1	8260B	11/6/15 19:0		(P5K0076
Dichlorodifluoromethane	BRL CVL	mg/kg dry	0.0053	0.00024	1	8260B	11/6/15 19:0		(P5K0076
Ethylbenzene	BRL	mg/kg dry	0.0053	0.00020) 1	8260B	11/6/15 19:0		(P5K007
Isopropyl Ether	BRL	mg/kg dry	0.0053	0.00021	. 1	8260B	11/6/15 19:0		(P5K007)
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0053	0.00031	1	8260B	11/6/15 19:0		(P5K007
m,p-Xylenes	BRL	mg/kg dry	0.011	0.00049) 1	8260B	11/6/15 19:0		(P5K007
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.053	0.00048	1	8260B	11/6/15 19:0	1 MW&C	(P5K007)
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.11	0.00048	3 1	8260B	11/6/15 19:0		(P5K007
Methyl Isobutyl Ketone	BRL	mg/kg dry	0.053	0.00045	5 1	8260B	11/6/15 19:0	1 MW&C	(P5K007
Methylene Chloride	BRL	mg/kg dry	0.0053	0.00030	1	8260B	11/6/15 19:0		(P5K007
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.011	0.00017	7 1	8260B	11/6/15 19:0		(P5K007
Naphthalene	0.0039 J	mg/kg dry	0.011	0.00017	1	8260B	11/6/15 19:0		(P5K007
n-Butylbenzene	BRL	mg/kg dry	0.0053	0.00027	7 1	8260B	11/6/15 19:0		(P5K007
n-Propylbenzene	BRL	mg/kg dry	0.0053	0.00031	1 . 1	8260B	11/6/15 19:0		(P5K007
o-Xylene	BRL	mg/kg dry	0.0053	0.00022	2 1	8260B	11/6/15 19:0		C P5K007
sec-Butylbenzene	BRL	mg/kg dry	0.0053	0.00025	5 1	8260B	11/6/15 19:0	1 MW&C	(P5K007

11/19/2015

Cardno - Charlotte Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-3 (4-6)
Prism Sample ID: 5110128-06

Prism Work Order: 5110128

Time Collected: 11/04/15 11:55 Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Styrene	BRL	mg/kg dry	0.0053	0.00032	1	8260B	11/6/15 19:01	MW&C	P5K0076
tert-Butylbenzene	BRL	mg/kg dry	0.0053	0.00018	1	8260B	11/6/15 19:01	MW&C	P5K0076
Tetrachloroethylene	BRL	mg/kg dry	0.0053	0.00025	1	8260B	11/6/15 19:01	MW&C	P5K0076
Toluene	BRL	mg/kg dry	0.0053	0.00030	1	8260B	11/6/15 19:01	MW&C	P5K0076
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0053	0.00031	1	8260B	11/6/15 19:01	MW&C	P5K0076
rans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0053	0.00028	1	8260B	11/6/15 19:01	MW&C	P5K0076
Trichloroethylene	BRL	mg/kg dry	0.0053	0.00034	1	8260B	11/6/15 19:01	MW&C	P5K0076
Trichlorofluoromethane	BRL	mg/kg dry	0.0053	0.00034	1	8260B	11/6/15 19:01	MW&C	P5K0076
Vinyl acetate	BRL	mg/kg dry	0.026	0.00072	1	8260B	11/6/15 19:01	MW&C	P5K0076
Vinyl chloride	BRL	mg/kg dry	0.0053	0.00025	1	8260B	11/6/15 19:01	MW&C	P5K0076
Kylenes, total	BRL	mg/kg dry	0.016	0.00099	1	8260B	11/6/15 19:01	MW&C	P5K0076

Surrogate	Recovery	Control Limits		
4-Bromofluorobenzene	101 %	70-130		
Dibromofluoromethane	103 %	84-123		
Toluene-d8	99 %	76-129		

11/19/2015

Cardno - Charlotte Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-9 (0-1) Prism Sample ID: 5110128-07 Prism Work Order: 5110128 Time Collected: 11/04/15 13:50

Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parameters									
% Solids	76.8	% by Weight	0.100	0.100	1	*SM2540 G	11/9/15 14:45	ARC	P5K0169
Semivolatile Organic Compoun	ds by GC/MS								
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.43	0.067	1	8270D	11/10/15 15:5	7 JM∨	P5K0151
1,2-Dichlorobenzene	BRL	mg/kg dry	0.43	0.065	1	8270D	11/10/15 15:	57 JM∨	P5K0151
1,3-Dichlorobenzene	BRL	mg/kg dry	0.43	0.060	1	8270D	11/10/15 15:5	57 JMV	P5K0151
1,4-Dichlorobenzene	BRL	mg/kg dry	0.43	0.063	1	8270D	11/10/15 15:	57 JMV	P5K0151
1-Methylnaphthalene	BRL	mg/kg dry	0.43	0.083	1	8270D	11/10/15 15:	57 JM∨	P5K0151
2,4,6-Trichlorophenol	BRL	mg/kg dry	0.43	0.080	1	8270D	11/10/15 15:	57 JM∨	P5K0151
2,4-Dichlorophenol	BRL	mg/kg dry	0.43	0.083	1	8270D	11/10/15 15:	57 JM∨	P5K0151
2,4-Dimethylphenol	BRL	mg/kg dry	0.43	0.066	1	8270D	11/10/15 15:	57 JM∨	P5K0151
2,4-Dinitrophenol	BRL	mg/kg dry	0.43	0.060	1	8270D	11/10/15 15:	57 JM∨	P5K0151
2,4-Dinitrotoluene	BRL	mg/kg dry	0.43	0.052	1	8270D	11/10/15 15:	57 JM∨	P5K0151
2,6-Dinitrotoluene	BRL	mg/kg dry	0.43	0.057	1	8270D	11/10/15 15:	57 JM∨	P5K015
2-Chloronaphthalene	BRL	mg/kg dry	0.43	0.062	1	8270D	11/10/15 15:	57 J M ∨	P5K015
2-Chlorophenol	BRL	mg/kg dry	0.43	0.061	1	8270D	11/10/15 15:	57 J M ∨	P5K015
2-Methylnaphthalene	BRL	mg/kg dry	0.43	0.069	1	8270D	11/10/15 15:	57 JMV	P5K015
2-Methylphenol	BRL	mg/kg dry	0.43	0.055	1	8270D	11/10/15 15:	57 J M ∨	P5K015
2-Nitrophenol	BRL	mg/kg dry	0.43	0.078	1	8270D	11/10/15 15:	57 J M ∨	P5K015
3,3'-Dichlorobenzidine	BRL	mg/kg dry	0.43	0.085	1	8270D	11/10/15 15:		P5K015
3/4-Methylphenol	BRL	mg/kg dry	0.43	0.053	1	8270D	11/10/15 15:	57 JM∨	P5K015
4,6-Dinitro-2-methylphenol	BRL	mg/kg dry	0.43	0.064	1	8270D	11/10/15 15:	57 JMV	P5K015
4-Bromophenyl phenyl ether	BRL.	mg/kg dry	0.43	0.074	1	8270D	11/10/15 15:	57 JM∨	P5K015
4-Chloro-3-methylphenol	BRL	mg/kg dry	0.43	0.060	1	8270D	11/10/15 15:		P5K015
4-Chloroaniline	BRL	mg/kg dry	0.43	0.052	1	8270D	11/10/15 15:		P5K015
4-Chlorophenyl phenyl ether	BRL	mg/kg dry	0.43	0.056	1	8270D	11/10/15 15:		P5K015
4-Nitrophenol	BRL	mg/kg dry	0.43	0.066	1	8270D	11/10/15 15:		P5K015
Acenaphthene	BRL	mg/kg dry	0.43	0.058	1	8270D	11/10/15 15:		P5K015
Acenaphthylene	0.13 J	mg/kg dry	0.43	0.062	1	8270D	11/10/15 15:		P5K015
Anthracene	0,16 J		0.43	0.069	1	8270D	11/10/15 15:		P5K015
Azobenzene	BRL	mg/kg dry				8270D 8270D	11/10/15 15:		P5K015
		mg/kg dry	0.43	0.057	1				P5K015
Benzo(a)anthracene	0.41 J	mg/kg dry	0.43	0.056	1	8270D	11/10/15 15:		
Benzo(a)pyrene	0.32 J	mg/kg dry	0.43	0.046	1	8270D	11/10/15 15:		P5K015
Benzo(b)fluoranthene	0.38 J	mg/kg dry	0.43	0.050	1	8270D	11/10/15 15:	57 JMV	P5K015
Benzo(g,h,i)perylene	0.16 J	mg/kg dry	0.43	0.047	1	8270D	11/10/15 15:	57 JMV	P5K015
Benzo(k)fluoranthene	0.16 J	mg/kg dry	0.43	0.056	1	8270D	11/10/15 15:	57 J M V	P5K015
Benzoic Acid	BRL	mg/kg dry	0.43	0.036	1	8270D	11/10/15 15	57 JMV	P5K015
Benzyl alcohol	BRL	mg/kg dry	0.43	0.057	1	8270D	11/10/15 15	57 JMV	P5K015
bis(2-Chloroethoxy)methane	BRL	mg/kg dry	0.43	0.074	1	8270D	11/10/15 15	57 JMV	P5K015
Bis(2-Chloroethyl)ether	BRL	mg/kg dry	0.43	0.061	1	8270D	11/10/15 15	:57 JM∨	P5K015
Bis(2-chloroisopropyl)ether	BRL	mg/kg dry	0.43	0.073	1	8270D	11/10/15 15	:57 JM∨	P5K015
Bis(2-Ethylhexyl)phthalate	BRL	mg/kg dry	0.43	0.064	1	8270D	11/10/15 15	57 JMV	P5K015

Cardno - Charlotte Attn: Christine Schaefer 7606 Whitehall Executive Center Drive, Suite Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-9 (0-1) Prism Sample ID: 5110128-07 Prism Work Order: 5110128 Time Collected: 11/04/15 13:50 Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Butyl benzyl phthalate	BRL	mg/kg dry	0.43	0.061	1	8270D	11/10/15 15:5	7 JMV	P5K0151
Chrysene	0.44	mg/kg dry	0.43	0.054	1	8270D	11/10/15 15:5	7 JMV	P5K0151
Dibenzo(a,h)anthracene	BRL	mg/kg dry	0.43	0.052	1	8270D	11/10/15 15:5	7 JMV	P5K0151
Dibenzofuran	BRL	mg/kg dry	0.43	0,065	1	8270D	11/10/15 15:5	7 JMV	P5K0151
Diethyl phthalate	BRL	mg/kg dry	0.43	0.059	1	8270D	11/10/15 15:5	7 JMV	P5K0151
Dimethyl phthalate	BRL	mg/kg dry	0.43	0.057	1	8270D	11/10/15 15:5	7 JMV	P5K0151
Di-n-butyl phthalate	BRL	mg/kg dry	0.43	0.061	1	8270D	11/10/15 15:5	7 J M ∨	P5K0151
Di-n-octyl phthalate	BRL	mg/kg dry	0.43	0.053	1	8270D	11/10/15 15:5	7 JMV	P5K0151
Fluoranthene	0.43	mg/kg dry	0.43	0.055	1	8270D	11/10/15 15:5	7 JMTV	P5K0151
Fluorene	BRL	mg/kg dry	0.43	0.062	1	8270D	11/10/15 15:5	7 JMV	P5K0151
Hexachlorobenzene	BRL	mg/kg dry	0.43	0.068	1	8270D	11/10/15 15:5	7 JMV	P5K0151
Hexachlorobutadiene	BRL	mg/kg dry	0.43	0.077	1	8270D	11/10/15 15:5	7 JM∨	P5K0151
Hexachlorocyclopentadiene	BRL	mg/kg dry	0.43	0.077	1	8270D	11/10/15 15:5	7 JMV	P5K0151
Hexachloroethane	BRL	mg/kg dry	0.43	0.072	1	8270D	11/10/15 15:5	7 JMV	P5K0151
Indeno(1,2,3-cd)pyrene	0.16 J	mg/kg dry	0.43	0.049	1	8270D	11/10/15 15:5	7 JMV	P5K0151
Isophorone	BRL	mg/kg dry	0.43	0.058	1	8270D	11/10/15 15:5	7 JM∨	P5K0151
Naphthalene	BRL	mg/kg dry	0.43	0.069	1	8270D	11/10/15 15:5	7 JMV	P5K0151
Nitrobenzene	BRL	mg/kg dry	0.43	0.061	1	8270D	11/10/15 15:5	7 JMV	P5K0151
N-Nitroso-di-n-propylamine	BRL	mg/kg dry	0.43	0.068	. 1	8270D	11/10/15 15:5	7 JM∨	P5K0151
N-Nitrosodiphenylamine	BRL	mg/kg dry	0.43	0.065	1	8270D	11/10/15 15:5	7 JMV	P5K0151
Pentachlorophenol	BRL	mg/kg dry	0.43	0.051	1	8270D	11/10/15 15:5	7 JMV	P5K0151
Phenanthrene	0.31 J	mg/kg dry	0.43	0.056	1	8270D	11/10/15 15:57	7 JMV	P6K0151
Phenol	BRL	mg/kg dry	0.43	0.063	1	8270D	11/10/15 15:5	7 J M ∨	P5K0151
Pyrene	0.62	mg/kg dry	0.43	0.057	1	8270D	11/10/15 15:57	JMV	P5K0151
			Surrogate		Recovery		Control Limits		
			2,4,6-Tribromophenol		74 %		39-132		
			2-Fluorobiphenyl		77 % 68 %		44-115 35-115		
			2-Fluorophenol Nitrobenzene-d5						
						69	%	37-122	
		Phenol-d5				72	%	34-121	
			Terphenyl-d	14		77	%	<i>54-127</i>	
Volatile Organic Compounds by	GC/MS								
1,1,1,2-Tetrachloroethane	BRL	mg/kg dry	0.0049	0.00040	1	8260B	11/6/15 19:29	MW&C	(P5K0076
1,1,1-Trichloroethane	BRL	mg/kg dry	0.0049	0.00024	1	8260B	11/6/15 19:29	MW&C	(P5K0076
1,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0049	0.00033	1	8260B	11/6/15 19:29	MW&C	(P5K0076
1,1,2-Trichloroethane	BRL	mg/kg dry	0.0049	0.00043	1	8260B	11/6/15 19:29	MW&C	(P5K0076
1,1-Dichloroethane	BRL	mg/kg dry	0.0049	0.00014	1	8260B	11/6/15 19:29	MW&C	(P5K0076
1,1-Dichloroethylene	BRL	mg/kg dry	0.0049	0.00022	1	8260B	11/6/15 19:29	MW&C	(P5K0076
1,1-Dichloropropylene	BRL	mg/kg dry	0.0049	0.00027	1	8260B	11/6/15 19:29	MW&C	(P5K0076
1,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0049	0.00028	1	8260B	11/6/15 19:29		(P5K0076
1,2,3-Trichloropropane	BRL	mg/kg dry	0.0049	0.00062	1	8260B	11/6/15 19:29		(P5K0076
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0049	0.00036	1	8260B	11/6/15 19:29	MW&C	(P5K0076
1,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0049	0.00037	1	8260B	11/6/15 19:29	MW&C	(P5K0076

Cardno - Charlotte

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-9 (0-1)
Prism Sample ID: 5110128-07

Prism Work Order: 5110128
Time Collected: 11/04/15 13:50
Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis A Date/Time	nalyst Batch ID
,2-Dibromoethane	BRL	mg/kg dry	0.0049	0.00020	1	8260B	11/6/15 19:29	MW&C(P5K0076
,2-Dichlorobenzene	BRL	mg/kg dry	0.0049	0.00023	1	8260B	11/6/15 19:29	MW&C(P5K0076
,2-Dichloroethane	BRL	mg/kg dry	0.0049	0.00029	1	8260B	11/6/15 19:29	MW&C(P5K0076
,2-Dichloropropane	BRL	mg/kg dry	0.0049	0.00030	1	8260B	11/6/15 19:29	MW&C(P5K0076
1,3,5-Trimethylbenzene	BRL	mg/kg dry	0.0049	0.00037	1	8260B	11/6/15 19:29	MW&C(P5K0076
,3-Dichlorobenzene	BRL ·	mg/kg dry	0.0049	0.00032	1	8260B	11/6/15 19:29	MW&C(P5K0076
1,3-Dichloropropane	BRL.	mg/kg dry	0.0049	0.00025	1	8260B	11/6/15 19:29	MW&C(P5K0076
1,4-Dichlorobenzene	BRL	mg/kg dry	0.0049	0.00019	1	8260B	11/6/15 19:29	MW&C(P5K0076
2,2-Dichloropropane	BRL	mg/kg dry	0.0049	0.00023	1	8260B	11/6/15 19:29	MW&C(P5K0076
2-Chlorotoluene	BRL.	mg/kg dry	0.0049	0.00025	1	8260B	11/6/15 19:29	MW&C(P5K0076
1-Chlorotoluene	BRL	mg/kg dry	0.0049	0.00029	1	8260B	11/6/15 19:29	MW&C(P5K0076
1-isopropyltoluene	BRL	mg/kg dry	0.0049	0.00024	1	8260B	11/6/15 19:29	MW&C(P5K0076
Acetone	0.072	mg/kg dry	0.049	0.0012	1	8260B	11/6/15 19:29	MW&C(P5K0076
3enzene	BRL	mg/kg dry	0.0029	0.00028	1	8260B	11/6/15 19:29	MW&C(P5K0076
3romobenzene	BRL	mg/kg dry	0.0049	0.00041	1	8260B	11/6/15 19:29	MW&C(P5K0076
Bromochloromethane	BRL	mg/kg dry	0.0049	0.00027	1	8260B	11/6/15 19:29	MW&C(P5K0076
Bromodichloromethane	BRL	mg/kg dry	0.0049	0.00027	1	8260B	11/6/15 19:29	MW&C(P5K0076
Bromoform	BRL	mg/kg dry	0.0049	0.00056	1	8260B	11/6/15 19:29	MW&C(P5K0076
Bromomethane	BRL	mg/kg dry	0.0098	0.00060	1	8260B	11/6/15 19:29	MW&C(P5K0076
Carbon Tetrachloride	BRL.	mg/kg dry	0.0049	0.00024	1	8260B	11/6/15 19:29	MW&C(P5K0076
Chlorobenzene	BRL	mg/kg dry	0.0049	0.00026	1	8260B	11/6/15 19:29	MW&C(P5K0076
Chloroethane	BRL	mg/kg dry	0.0098	0.00041	1	8260B	11/6/15 19:29	MW&C(P5K0076
Chloroform	BRL	mg/kg dry	0.0049	0.00035	1	8260B	11/6/15 19:29	MW&C(P5K0076
Chloromethane	BRL	mg/kg dry	0.0049	0.00033	1	8260B	11/6/15 19:29	MW&C(P5K0076
cis-1,2-Dichloroethylene	BRL	mg/kg dry	0.0049	0.00021	1	8260B	11/6/15 19:29	MW&C(P5K0076
cis-1,3-Dichloropropylene	BRL	mg/kg dry	0.0049	0.00016	1	8260B	11/6/15 19:29	MW&C(P5K0076
Dibromochloromethane	BRL	mg/kg dry	0.0049	0.00020	1	8260B	11/6/15 19:29	MW&C(P5K0076
Dichlorodifluoromethane	BRL CVL	mg/kg dry	0.0049	0.00022	1	8260B	11/6/15 19:29	MW&C(P5K0076
Ethylbenzene	BRL	mg/kg dry	0.0049	0.00019		8260B	11/6/15 19:29	MW&C(P5K0076
Isopropyl Ether	BRL	mg/kg dry	0.0049	0.00020		8260B	11/6/15 19:29	
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0049	0.00029		8260B	11/6/15 19:29	
m,p-Xylenes	BRL	mg/kg dry	0.0098	0.00045		8260B	11/6/15 19:29	
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.049	0.00044		8260B	11/6/15 19:29	
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.098	0.00044		8260B	11/6/15 19:29	
Methyl Isobutyl Ketone	BRL.	mg/kg dry	0.049	0.00042		8260B	11/6/15 19:29	
Methylene Chloride	BRL	mg/kg dry	0.0049	0.00042		8260B	11/6/15 19:29	
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.0049	0.00027		8260B	11/6/15 19:29	
Naphthalene	BRL	mg/kg dry	0.0098	0.00015		8260B	11/6/15 19:29	
n-Butylbenzene	BRL	mg/kg dry	0.0049	0.00015		8260B	11/6/15 19:29	
n-Propylbenzene	BRL	mg/kg dry	0.0049	0.00029		8260B	11/6/15 19:29	
o-Xylene	BRL	mg/kg dry	0.0049	0.00029		8260B	11/6/15 19:29	
sec-Butylbenzene	BRL	mg/kg dry	0.0049	0.00024		8260B	11/6/15 19:29	
Styrene	BRL	mg/kg dry	0.0049	0.00024		8260B	11/6/15 19:29	

Laboratory Report

11/19/2015

Cardno - Charlotte Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-9 (0-1)
Prism Sample ID: 5110128-07
Prism Work Order: 5110128
Time Collected: 11/04/15 13:50

Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis A Date/Time	Analyst Batch ID
tert-Butylbenzene	BRL	mg/kg dry	0.0049	0.00017	1	8260B	11/6/15 19:29	MW&C(P5K0076
Tetrachloroethylene	BRL	mg/kg dry	0.0049	0.00023	1	8260B	11/6/15 19:29	MW&C(P5K0076
Toluene	BRL	mg/kg dry	0.0049	0.00028	1	8260B	11/6/15 19:29	MW&C(P5K0076
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0049	0.00029	1	8260B	11/6/15 19:29	MW&C(P5K0076
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0049	0.00026	1	8260B	11/6/15 19:29	MW&C(P5K0076
Trichloroethylene	BRL	mg/kg dry	0.0049	0.00032	1	8260B	11/6/15 19:29	MW&C(P5K0076
Trichlorofluoromethane	BRL	mg/kg dry	0.0049	0.00032	1	8260B	11/6/15 19:29	MW&C(P5K0076
Vinyl acetate	BRL	mg/kg dry	0.024	0.00067	1	8260B	11/6/15 19:29	MW&C(P5K0076
Vinyl chloride	BRL	mg/kg dry	0.0049	0.00024	1	8260B	11/6/15 19:29	MW&C(P5K0076
Xylenes, total	BRL	mg/kg dry	0.015	0.00092	1	8260B	11/6/15 19:29	MW&C(P5K0076

Surrogate	Recovery	Control Limits
4-Bromofluorobenzene	103 %	70-130
Dibromofluoromethane	104 %	84-123
Toluene-d8	100 %	76-129

7606 Whitehall Executive Center Drive, Suite

Cardno - Charlotte
Attn: Christine Schaefer

Project: Kesler Mill (Brownfield)

Client Sample ID: GW-9 (4-6)
Prism Sample ID: 5110128-08
Prism Work Order: 5110128
Time Collected: 11/04/15 14:00

Time Submitted: 11/05/15 16:40

Charlotte, NC 28273

Sample Matrix: Solid

Analyst Parameter Result Units Dilution Method Analysis Batch Report MDL Factor Date/Time ID Limit **General Chemistry Parameters** % Solids P5K0169 76.6 % by 0.100 0.100 1 *SM2540 G 11/9/15 14:45 ARC Weight Semivolatile Organic Compounds by GC/MS 11/10/15 13:19 P5K0151 1,2,4-Trichlorobenzene BRL mg/kg dry 0.43 0.067 1 8270D JMV P5K0151 1.2-Dichlorobenzene BRL .IMV mg/kg dry 0.43 0.065 1 8270D 11/10/15 13:19 1.3-Dichlorobenzene BRL P5K0151 8270D 11/10/15 13:19 mg/kg dry 0.43 0.061 1 P5K0151 1.4-Dichlorobenzene BRL mg/kg dry 0.43 0.063 1 8270D 11/10/15 13:19 JMV 1-Methylnaphthalene P5K0151 BRL mg/kg dry 8270D 11/10/15 13:19 JMV 0.43 0.083 1 2.4.6-Trichlorophenol BRL mg/kg dry 0.43 0.081 1 8270D 11/10/15 13:19 JMV P5K0151 2,4-Dichlorophenol BRL 8270D 11/10/15 13:19 JMV P5K0151 mg/kg dry 0.083 1 0.43 2,4-Dimethylphenol BRL 11/10/15 13:19 P5K0151 mg/kg dry 0.43 0.066 1 8270D JMV 2,4-Dinitrophenol P5K0151 BRL 8270D 11/10/15 13:19 JMV mg/kg dry 0.43 0.060 1 2,4-Dinitrotoluene BRL P5K0151 mg/kg dry 0.43 0.052 1 11/10/15 13:19 2,6-Dinitrotoluene BRL mg/kg dry 0.43 0.057 1 8270D 11/10/15 13:19 JMV P5K0151 2-Chloronaphthalene BRL mg/kg dry 8270D 11/10/15 13:19 JMV P5K0151 0.43 0.062 2-Chlorophenol P5K0151 BRI mg/kg dry 0.061 8270D 11/10/15 13:19 JMV 0.43 1 2-Methylnaphthalene P5K0151 BRL 11/10/15 13:19 JMV mg/kg dry 8270D 0.43 0.069 1 2-Methylphenol P5K0151 BRI mg/kg dry 0.43 0.055 1 8270D 11/10/15 13:19 JMV 2-Nitrophenol BRL mg/kg dry 8270D 11/10/15 13:19 JMV P5K0151 0.43 0.078 1 3.3'-Dichlorobenzidine BRL 8270D 11/10/15 13:19 JMV P5K0151 mg/kg dry 0.43 0.085 3/4-Methylphenol BRL P5K0151 JMV 11/10/15 13:19 mg/kg dry 0.43 0.053 1 8270D 4,6-Dinitro-2-methylphenol P5K0151 BRL mg/kg dry 0.43 0.065 8270D 11/10/15 13:19 1 P5K0151 4-Bromophenyl phenyl ether BRL mg/kg dry 0.43 0.074 1 8270D 11/10/15 13:19 JMV 4-Chloro-3-methylphenol BRL 11/10/15 13:19 JMV P5K0151 mg/kg dry 0.43 0.060 1 8270D 4-Chloroaniline BRL 8270D 11/10/15 13:19 JMV P5K0151 mg/kg dry 0.43 0.052 1 4-Chlorophenyl phenyl ether P5K0151 BRL 8270D 11/10/15 13:19 JMV mg/kg dry 0.43 0.056 1 4-Nitrophenol P5K0151 BRL mg/kg dry 0.43 0.066 8270D 11/10/15 13:19 1 P5K0151 Acenaphthene 11/10/15 13:19 JMV BRL mg/kg dry 0.43 0.059 1 8270D Acenaphthylene P5K0151 BRL mg/kg dry 8270D 11/10/15 13:19 JMV 0.43 0.062 1 P5K0151 Anthracene 11/10/15 13:19 JMV BRL mg/kg dry 0.43 0.069 1 8270D P5K0151 Azobenzene BRL 8270D 11/10/15 13:19 JMV mg/kg dry 0.057 0.43 1 P5K0151 Benzo(a)anthracene BRL mg/kg dry 0.43 0.056 8270D 11/10/15 13:19 JMV P5K0151 Benzo(a)pyrene BRL 8270D 11/10/15 13:19 JMV ma/ka dry 0.43 0.047 1 P5K0151 Benzo(b)fluoranthene BRL JMV mg/kg dry 0.43 0.050 1 8270D 11/10/15 13:19 11/10/15 13:19 JMV Benzo(g,h,i)perylene BRL mg/kg dry 0.43 0.047 1 82700 P5K0151 Benzo(k)fluoranthene BRL 8270D 11/10/15 13:19 JMV ma/ka dry 0.43 0.056 1 P5K0151 Benzoic Acid BRL 8270D 11/10/15 13:19 JMV mg/kg dry 0.43 0.036 1 Benzyl alcohol JMV P5K0151 BRL 11/10/15 13:19 8270D mg/kg dry 0.43 0.057 1 P5K0151 bis(2-Chloroethoxy)methane BRL 11/10/15 13:19 JMV mg/kg dry 0.43 0.075 1 8270D JM∨ P5K0151 Bis(2-Chloroethyl)ether RRI mg/kg dry 0.43 0.061 1 8270D 11/10/15 13:19 P5K0151 Bis(2-chloroisopropyl)ether BRL mg/kg dry 0.074 8270D 11/10/15 13:19 JMV 0.43 1 Bis(2-Ethylhexyl)phthalate P5K0151 BRI mg/kg dry 0.43 0.064 8270D 11/10/15 13:19 JMV

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Cardno - Charlotte Attn: Christine Schaefer 7606 Whitehall Executive Center Drive, Suite Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Prism Sample ID: 5110128-08 Prism Work Order: 5110128 Sample Matrix: Solid Time Collected: 11/04/15 14:00 Time Submitted: 11/05/15 16:40

Client Sample ID: GW-9 (4-6)

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Ana Date/Time	alyst	Batch ID
Butyl benzyl phthalate	BRL	mg/kg dry	0.43	0.061	1	8270D	11/10/15 13:19	JM∨	P5K0151
Chrysene	BRL	mg/kg dry	0.43	0.054	. 1	8270D	11/10/15 13:19	JM∨	P5K0151
Dibenzo(a,h)anthracene	BRL	mg/kg dry	0.43	0.052	1	8270D	11/10/15 13:19	JM∨	P5K0151
Dibenzofuran	BRL	mg/kg dry	0.43	0.065	1	8270D	11/10/15 13:19	JMV	P5K0151
Diethyl phthalate	BRL	mg/kg dry	0.43	0.059	1	8270D	11/10/15 13:19	JMV	P5K0151
Dimethyl phthalate	BRL	mg/kg dry	0.43	0.057	1	8270D	11/10/15 13:19	JM∨	P5K0151
Di-n-butyl phthalate	BRL	mg/kg dry	0.43	0.061	1	8270D	11/10/15 13:19	JMV	P5K0151
Di-n-octyl phthalate	BRL	mg/kg dry	0.43	0.053	1	8270D	11/10/15 13:19	JMV	P5K0151
Fluoranthene	BRL	mg/kg dry	0.43	0.055	1	8270D	11/10/15 13:19	JMV	P5K0151
Fluorene	BRL	mg/kg dry	0.43	0.062	1	8270D	11/10/15 13:19	JM∨	P5K0151
Hexachlorobenzene	BRL	mg/kg dry	0.43	0.068	1	8270D	11/10/15 13:19	JMV	P5K0151
Hexachlorobutadiene	BRL	mg/kg dry	0.43	0.077	1	8270D	11/10/15 13:19	JMV	P5K0151
Hexachlorocyclopentadiene	BRL	mg/kg dry	0.43	0.077	1	8270D	11/10/15 13:19	JM∨	P5K0151
Hexachloroethane	BRL	mg/kg dry	0.43	0.072	1	8270D	11/10/15 13:19	JMV	P5K0151
Indeno(1,2,3-cd)pyrene	BRL	mg/kg dry	0.43	0.049	1	8270D	11/10/15 13:19	JM∨	P5K0151
Isophorone	BRL	mg/kg dry	0.43	0.058	1	8270D	11/10/15 13:19	JMV	P5K0151
Naphthalene	BRL	mg/kg dry	0.43	0.069	1	8270D	11/10/15 13:19	JMV	P5K0151
Nitrobenzene	BRL	mg/kg dry	0.43	0.061	1	8270D	11/10/15 13:19	JMV	P5K0151
N-Nitroso-di-n-propylamine	BRL	mg/kg dry	0.43	0,068	1	8270D	11/10/15 13:19	JM∨	P5K0151
N-Nitrosodiphenylamine	BRL	mg/kg dry	0.43	0.065	1	8270D	11/10/15 13:19	JMV	P5K0151
Pentachlorophenol	BRL	mg/kg dry	0.43	0.051	1	8270D	11/10/15 13:19	JMV	P5K0151
Phenanthrene	BRL	mg/kg dry	0.43	0.056	1	8270D	11/10/15 13:19	JMV	P5K0151
Phenol	BRL	mg/kg dry	0.43	0.064	1	8270D	11/10/15 13:19	JMV	P5K0151
Pyrene	BRL	mg/kg dry	0.43	0.057	1	8270D	11/10/15 13:19	VML	P5K0151
			Surrogate			Recov	very Co	ontrol L	imits
			2,4,6-Tribro	mophenol		75	5% 3	9-132	
			2-Fluorobipt	nenyi		80	9% 4	4-115	
			2-Fluorophe	nol		68	3% 3	5-115	
			Nitrobenzen	e-d5		73	3 %	7-122	

Volatile	Organic	Compounds	by GC/MS
• Claulo	O game	Compounds	by Contro

Volatile Organic Compounds I	by GC/MS							
1,1,1,2-Tetrachloroethane	BRL	mg/kg dry	0.0054	0.00044	1	8260B	11/6/15 19:57	MW&C(P5K0076
1,1,1-Trichloroethane	BRL	mg/kg dry	0.0054	0.00026	1	8260B	11/6/15 19:57	MW&C(P5K0076
1,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0054	0.00037	1	8260B	11/6/15 19:57	MW&C(P5K0076
1,1,2-Trichloroethane	BRL	mg/kg dry	0.0054	0.00048	1	8260B	11/6/15 19:57	MW&C(P5K0076
1,1-Dichloroethane	BRL	mg/kg dry	0.0054	0.00015	1	8260B	11/6/15 19:57	MW&C(P5K0076
1,1-Dichloroethylene	BRL	mg/kg dry	0.0054	0.00024	1	8260B	11/6/15 19:57	MW&C(P5K0076
1,1-Dichloropropylene	BRL	mg/kg dry	0.0054	0.00030	1	8260B	11/6/15 19:57	MW&C(P5K0076
1,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0054	0.00031	1	8260B	11/6/15 19:57	MW&C(P5K0076
1,2,3-Trichloropropane	BRL	mg/kg dry	0.0054	0.00069	1	8260B	11/6/15 19:57	MW&C(P5K0076
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0054	0.00040	1	8260B	11/6/15 19:57	MW&C(P5K0076
1,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0054	0.00041	1	8260B	11/6/15 19:57	MW&C(P5K0076

Phenol-d5

Terphenyl-d14

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

34-121

54-127

73 % 80 %

Laboratory Report

11/19/2015

Cardno - Charlotte Attn: Christine Schaefer 7606 Whitehall Executive Center Drive, Suite Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-9 (4-6)
Prism Sample ID: 5110128-08
Prism Work Order: 5110128
Time Collected: 11/04/15 14:00
Time Submitted: 11/05/15 16:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
1,2-Dibromoethane	BRL	mg/kg dry	0.0054	0.00022	1	8260B	11/6/15 19:57	MW&C	P5K0076
1,2-Dichlorobenzene	BRL	mg/kg dry	0.0054	0.00025	1	8260B	11/6/15 19:57	MW&C	P5K0076
1,2-Dichloroethane	BRL	mg/kg dry	0.0054	0.00032	1	8260B	11/6/15 19:57	MW&C	P5K0076
1,2-Dichloropropane	BRL	mg/kg dry	0.0054	0.00034	1	8260B	11/6/15 19:57	MW&C	P5K0076
1,3,5-Trimethylbenzene	BRL	mg/kg dry	0.0054	0.00041	1	8260B	11/6/15 19:57	MW&C	P5K0076
1,3-Dichlorobenzene	BRL	mg/kg dry	0.0054	0.00036	1	8260B	11/6/15 19:57	MW&C	P5K0076
1,3-Dichloropropane	BRL	mg/kg dry	0.0054	0.00027	1	8260B	11/6/15 19:57	MW&C	P5K0076
1,4-Dichlorobenzene	BRL	mg/kg dry	0.0054	0:00021	1	8260B	11/6/15 19:57	MW&C	P5K0076
2,2-Dichloropropane	BRL	mg/kg dry	0.0054	0.00026	1	8260B	11/6/15 19:57	MW&C	P5K0076
2-Chlorotoluene	BRL	mg/kg dry	0.0054	0.00028	1	8260B	11/6/15 19:57	MW&C	(P5K0076
4-Chlorotoluene	BRL	mg/kg dry	0.0054	0.00032	1	8260B	11/6/15 19:57	MW&C	(P5K0076
4-isopropyltoluene	BRL	mg/kg dry	0.0054	0.00026	1	8260B	11/6/15 19:57	MW&C	(P5K0076
Acetone	0.11	mg/kg dry	0.054	0.0013	1	8260B	11/6/15 19:57	MW&C	P5K0076
Benzene	BRL	mg/kg dry	0.0032	0.00031	1	8260B	11/6/15 19:5	7 MW&C	(P5K0076
Bromobenzene	BRL	mg/kg dry	0.0054	0.00045	1	8260B	11/6/15 19:5	7 MW&C	(P5K0076
Bromochloromethane	BRL	mg/kg dry	0.0054	0.00030	1	8260B	11/6/15 19:5	7 MW&C	(P5K0076
Bromodichloromethane	BRL	mg/kg dry	0.0054	0.00030	1	8260B	11/6/15 19:5	7 MW&C	(P5K0076
Bromoform	BRL	mg/kg dry	0.0054	0.00061	1	8260B	11/6/15 19:5	7 MW&C	(P5K0076
Bromomethane	BRL	mg/kg dry	0.011	0.00067	1	8260B	11/6/15 19:5		(P5K0076
Carbon Tetrachloride	BRL	mg/kg dry	0.0054	0.00027	1	8260B	11/6/15 19:5	7 MW&C	(P5K0076
Chlorobenzene	BRL	mg/kg dry	0.0054	0.00029	1	8260B	11/6/15 19:5	7 MW&C	(P5K0076
Chloroethane	BRL	mg/kg dry	0.011	0.00045		8260B	11/6/15 19:5		(P5K0076
Chloroform	BRL	mg/kg dry	0.0054	0.00039		8260B	11/6/15 19:5		(P5K0076
Chloromethane	BRL	mg/kg dry	0.0054	0.00036		8260B	11/6/15 19:5		(P5K0076
cis-1,2-Dichloroethylene	BRL	mg/kg dry	0.0054	0.00023		8260B	11/6/15 19:5		(P5K0076
cis-1,3-Dichloropropylene	BRL	mg/kg dry	0.0054	0.00018		8260B	11/6/15 19:5		(P5K0076
Dibromochloromethane	BRL	mg/kg dry	0.0054	0.00022		8260B	11/6/15 19:5		(P5K0076
Dichlorodifluoromethane	BRL CVL	mg/kg dry	0.0054	0,00025		8260B	11/6/15 19:5		C P5K0076
Ethylbenzene	BRL	mg/kg dry	0.0054	0.00021		8260B	11/6/15 19:5		(P5K007
Isopropyl Ether	BRL	mg/kg dry	0.0054	0.00027		8260B	11/6/15 19:5		C P5K007
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0054	0.00032		8260B	11/6/15 19:5		C P5K007
m,p-Xylenes	BRL	mg/kg dry	0,011	0.00050		8260B	11/6/15 19:5		C P5K007
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.054	0.00049		8260B	11/6/15 19:5		C P5K007
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.11	0.00049		8260B	11/6/15 19:5		C P5K007
Methyl isobutyl Ketone	BRL	mg/kg dry	0.054	0.00046		8260B	11/6/15 19:5		;(P5K007
Methylene Chloride	BRL	mg/kg dry	0.0054	0.00030		8260B	11/6/15 19:5		C P5K007
Methyl-tert-Butyl Ether	BRL	mg/kg dry		0.00017		8260B	11/6/15 19:5		C P5K007
Naphthalene	BRL	mg/kg dry	0.011	0.00017		8260B	11/6/15 19:5		C P5K007
n-Butylbenzene	BRL		0.011			8260B	11/6/15 19:5		C P5K007
n-Propylbenzene		mg/kg dry	0.0054	0.00028					C P5K007
• •	BRL	mg/kg dry	0.0054	0.00032		8260B	11/6/15 19:5		C P5K007
o-Xylene	BRL	mg/kg dry	0.0054	0.00022		8260B	11/6/15 19:5		C P5K007
sec-Butylbenzene	BRL	mg/kg dry	0.0054	0.00026		8260B	11/6/15 19:5		
Styrene	BRL	mg/kg dry	0.0054	0.00033	3 1	8260B	11/6/15 19:5	/ MVV&C	C P5K007

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Client Sample ID: GW-9 (4-6) Prism Sample ID: 5110128-08 Prism Work Order: 5110128 Time Collected: 11/04/15 14:00

	I IISIII WOLK OLGEL. STITUTZO
Sample Matrix: Solid	Time Collected: 11/04/15 14:00
	Time Submitted: 11/05/15 16:40

Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst E	Batch ID
BRL	mg/kg dry	0.0054	0.00018	1	8260B	11/6/15 19:57	MW&C(P5	K007€
BRL	mg/kg dry	0.0054	0.00026	1	8260B	11/6/15 19:57	MW&C(P5	K0076
BRL	mg/kg dry	0.0054	0.00031	1	8260B	11/6/15 19:57	MW&C(P5	K0076
BRL	mg/kg dry	0.0054	0.00032	1	8260B	11/6/15 19:57	MW&C(P5	K0076
BRL	mg/kg dry	0.0054	0.00028	1	8260B	11/6/15 19:57	MW&C(P5	K0076
BRL	mg/kg dry	0.0054	0.00035	1	8260B	11/6/15 19:57	MW&C(P5	K0076
BRL	mg/kg dry	0.0054	0.00035	1	8260B	11/6/15 19:57	MW&C(P5	K0076
BRL	mg/kg dry	0.027	0.00074	1	8260B	11/6/15 19:57	MW&C(P5	K0076
BRL	mg/kg dry	0.0054	0.00026	1	8260B	11/6/15 19:57	MW&C(P5	K0076
BRL	mg/kg dry	0.016	0.0010	1	8260B	11/6/15 19:57	MW&C(P5	коо7е
	BRL BRL BRL BRL BRL BRL BRL	BRL mg/kg dry BRL mg/kg dry BRL mg/kg dry BRL mg/kg dry BRL mg/kg dry BRL mg/kg dry BRL mg/kg dry BRL mg/kg dry BRL mg/kg dry BRL mg/kg dry BRL mg/kg dry	BRL mg/kg dry 0.0054 BRL mg/kg dry 0.0054 BRL mg/kg dry 0.0054 BRL mg/kg dry 0.0054 BRL mg/kg dry 0.0054 BRL mg/kg dry 0.0054 BRL mg/kg dry 0.0054 BRL mg/kg dry 0.0054 BRL mg/kg dry 0.0054 BRL mg/kg dry 0.0054 BRL mg/kg dry 0.0054 BRL mg/kg dry 0.0054	BRL mg/kg dry 0.0054 0.00018 BRL mg/kg dry 0.0054 0.00026 BRL mg/kg dry 0.0054 0.00031 BRL mg/kg dry 0.0054 0.00032 BRL mg/kg dry 0.0054 0.00032 BRL mg/kg dry 0.0054 0.00028 BRL mg/kg dry 0.0054 0.00035 BRL mg/kg dry 0.0054 0.00035 BRL mg/kg dry 0.0054 0.00035 BRL mg/kg dry 0.0054 0.00035 BRL mg/kg dry 0.0054 0.00074 BRL mg/kg dry 0.0054 0.00026	BRL mg/kg dry 0.0054 0.00018 1 BRL mg/kg dry 0.0054 0.00026 1 BRL mg/kg dry 0.0054 0.00031 1 BRL mg/kg dry 0.0054 0.00032 1 BRL mg/kg dry 0.0054 0.00028 1 BRL mg/kg dry 0.0054 0.00035 1 BRL mg/kg dry 0.0054 0.00035 1 BRL mg/kg dry 0.0027 0.00074 1 BRL mg/kg dry 0.0054 0.00026 1	BRL mg/kg dry 0.0054 0.00018 1 8260B BRL mg/kg dry 0.0054 0.00026 1 8260B BRL mg/kg dry 0.0054 0.00031 1 8260B BRL mg/kg dry 0.0054 0.00032 1 8260B BRL mg/kg dry 0.0054 0.00028 1 8260B BRL mg/kg dry 0.0054 0.00035 1 8260B BRL mg/kg dry 0.0054 0.00035 1 8260B BRL mg/kg dry 0.0027 0.00074 1 8260B BRL mg/kg dry 0.0054 0.00026 1 8260B	BRL mg/kg dry 0.0054 0.00018 1 8260B 11/6/15 19:57 BRL mg/kg dry 0.0054 0.00026 1 8260B 11/6/15 19:57 BRL mg/kg dry 0.0054 0.00031 1 8260B 11/6/15 19:57 BRL mg/kg dry 0.0054 0.00032 1 8260B 11/6/15 19:57 BRL mg/kg dry 0.0054 0.00032 1 8260B 11/6/15 19:57 BRL mg/kg dry 0.0054 0.00028 1 8260B 11/6/15 19:57 BRL mg/kg dry 0.0054 0.00035 1 8260B 11/6/15 19:57 BRL mg/kg dry 0.0054 0.00035 1 8260B 11/6/15 19:57 BRL mg/kg dry 0.0054 0.00035 1 8260B 11/6/15 19:57 BRL mg/kg dry 0.0054 0.00035 1 8260B 11/6/15 19:57 BRL mg/kg dry 0.0054 0.00035 1 8260B 11/6/15 19:57 BRL mg/kg dry 0.0054 0.00036 1 8260B 11/6/15 19:57	BRL mg/kg dry 0.0054 0.00026 1 8260B 11/6/15 19:57 MW&CC P5 BRL mg/kg dry 0.0054 0.00031 1 8260B 11/6/15 19:57 MW&CC P5 BRL mg/kg dry 0.0054 0.00031 1 8260B 11/6/15 19:57 MW&CC P5 BRL mg/kg dry 0.0054 0.00032 1 8260B 11/6/15 19:57 MW&CC P5 BRL mg/kg dry 0.0054 0.00032 1 8260B 11/6/15 19:57 MW&CC P5 BRL mg/kg dry 0.0054 0.00028 1 8260B 11/6/15 19:57 MW&CC P5 BRL mg/kg dry 0.0054 0.00035 1 8260B 11/6/15 19:57 MW&CC P5 BRL mg/kg dry 0.0054 0.00035 1 8260B 11/6/15 19:57 MW&CC P5 BRL mg/kg dry 0.0054 0.00035 1 8260B 11/6/15 19:57 MW&CC P5 BRL mg/kg dry 0.0054 0.00035 1 8260B 11/6/15 19:57 MW&CC P5 BRL mg/kg dry 0.0054 0.00035 1 8260B 11/6/15 19:57 MW&CC P5 BRL mg/kg dry 0.0054 0.00036 1 8260B 11/6/15 19:57 MW&CC P5 BRL mg/kg dry 0.0054 0.00026 1 8260B 11/6/15 19:57 MW&CC P5

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite Charlotte, NC 28273

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5K0076 - 5035										
Blank (P5K0076-BLK1)				Prepared	& Analyze	d: 11/06/1	5			
1,1,1,2-Tetrachloroethane	BRL	0.0050	mg/kg wet							
1,1,1-Trichloroethane	BRL	0.0050	mg/kg wet							
1,1,2,2-Tetrachloroethane	BRL	0.0050	mg/kg wet							
1,1,2-Trichloroethane	BRL	0.0050	mg/kg wet							
1,1-Dichloroethane	BRL	0.0050	mg/kg wet							
1,1-Dichloroethylene	BRL	0.0050	mg/kg wet							
1,1-Dichloropropylene	BRL	0.0050	mg/kg wet							
1,2,3-Trichlorobenzene	BRL	0.0050	mg/kg wet							
1,2,3-Trichloropropane	BRL	0.0050	mg/kg wet							
1,2,4-Trichlorobenzene	BRL	0.0050	mg/kg wet							
1,2,4-Trimethylbenzene	BRL	0.0050	mg/kg wet							
1,2-Dibromoethane	BRL	0.0050	mg/kg wet							
1,2-Dichlorobenzene	BRL	0.0050	mg/kg wet							
1,2-Dichloroethane	BRL	0.0050	mg/kg wet							
1,2-Dichloropropane	BRL	0.0050	mg/kg wet							
1,3,5-Trimethylbenzene	BRL	0.0050	mg/kg wet							
1,3-Dichlorobenzene	BRL	0.0050	mg/kg wet							
1,3-Dichloropropane	BRL	0.0050	mg/kg wet							
1,4-Dichlorobenzene	BRL	0.0050	mg/kg wet							
2,2-Dichloropropane	BRL	0.0050	mg/kg wet							
2-Chlorotoluene	BRL	0.0050	mg/kg wet							
4-Chlorotoluene	BRL	0.0050	mg/kg wet							
4-Isopropyitoluene	BRL	0.0050	mg/kg wet							
Acetone	BRL	0.050	mg/kg wet							
Benzene	BRL	0.0030	mg/kg wet							
Bromobenzene	BRL	0.0050	mg/kg wet							
Bromochloromethane	BRL	0.0050	mg/kg wet							
Bromodichloromethane	BRL	0.0050	mg/kg wet							
Bromoform	BRL	0.0050	mg/kg wet							
Bromomethane	BRL	0.010	mg/kg wet							
Carbon Tetrachloride	BRL	0.0050	mg/kg wet							
Chlorobenzene	BRL	0.0050	mg/kg wet							
Chloroethane	BRL	0.010	mg/kg wet							
Chloroform	BRL	0.0050	mg/kg wet							
Chloromethane	BRL	0.0050	mg/kg wet							
cis-1,2-Dichloroethylene	BRL	0.0050	mg/kg wet							
cis-1,3-Dichloropropylene	BRL	0.0050	mg/kg wet							
Dibromochloromethane	BRL	0.0050	mg/kg wet							
Dichlorodifluoromethane	BRL	0.0050	mg/kg wet							
Ethylbenzene	BRL	0.0050	mg/kg wet							
Isopropyl Ether	BRL	0.0050	mg/kg wet							
Isopropylbenzene (Cumene)	BRL	0.0050	mg/kg wet							
m,p-Xylenes	BRL	0.010	mg/kg wet							
Methyl Butyl Ketone (2-Hexanone)	BRL	0.050								
Methyl Ethyl Ketone (2-Butanone)	BRL	0.030							•	
Methyl Isobutyl Ketone	BRL	0.050								

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5K0076 - 5035										
Blank (P5K0076-BLK1)				Prepared	& Analyze	d: 11/06/1	5			
Methylene Chloride	BRL	0.0050	mg/kg wet	<u> </u>						
Methyl-tert-Butyl Ether	BRL	0.010	mg/kg wet							
Naphthalene	BRL	0.010	mg/kg wet							
n-Butylbenzene	BRL	0.0050	mg/kg wet							
n-Propylbenzene	BRL	0.0050	mg/kg wet							
o-Xylene	BRL	0.0050	mg/kg wet							
sec-Butylbenzene	BRL	0.0050	mg/kg wet							
Styrene	BRL	0.0050	mg/kg wet							
tert-Butylbenzene	BRL	0.0050	mg/kg wet			•				
Tetrachloroethylene	BRL	0.0050	mg/kg wet							
Toluene	BRL	0.0050	mg/kg wet							
trans-1,2-Dichloroethylene	BRL	0.0050	mg/kg wet							
trans-1,3-Dichloropropylene	BRL	0.0050	mg/kg wet							
Trichloroethylene	BRL	0.0050	mg/kg wet							
Trichlorofluoromethane	BRL	0.0050	mg/kg wet							
Vinyl acetate	BRL	0.025	mg/kg wet							
Vinyl chloride	BRL	0.0050	mg/kg wet							
Xylenes, total	BRL	0.015	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	50.6	2,2,5	ug/L	50.00		101	70-130			
Surrogate: Dibromofluoromethane	49.6		ug/L ug/L	50.00		99	84-123			
Surrogate: Toluene-d8	· 49.9		ug/L	50.00		100	76-129			
LCS (P5K0076-BS1)			•		& Analyze	d: 11/06/1				
1,1,1,2-Tetrachloroethane	0.0522	0,0050	mg/kg wet		ar mary 20	104	72-115			
1,1,1-Trichloroethane	0.0532	0.0050	mg/kg wet			106	67-131			
1,1,2,2-Tetrachloroethane	0.0513	0.0050	mg/kg wet			103	56-126			
1,1,2-Trichloroethane	0.0486	0.0050	mg/kg wet			97	70-133			
1,1-Dichloroethane	0.0508	0.0050	mg/kg wet			102	74-127			
1,1-Dichloroethylene	0.0479	0.0050	mg/kg wet			96	67-149			
1,1-Dichloropropylene	0.0528	0.0050	mg/kg wet			106	71-130			
	0.0513	0.0050	mg/kg wet			103	68-130			
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	0.0470	0.0050	mg/kg wet			94	60-137			
1,2,4-Trichlorobenzene	0.0512	0.0050	mg/kg wet			102	66-125			
1,2,4-Trimethylbenzene	0.0535	0.0050	mg/kg wet			107	69-129			
	0.0490	0.0050	mg/kg wet			98	70-132			
1,2-Dibromoethane		0.0050	mg/kg wet			99	72-123			
1,2-Dichlorophane	0.0495	0.0050	mg/kg wet			96	68-128			
1,2-Dichloroethane	0.0478					105	73-130			
1,2-Dichloropropane	0.0523	0.0050	mg/kg wet			103	69-128			
1,3,5-Trimethylbenzene	0.0534	0.0050	mg/kg wet			107	71-120			
1,3-Dichlorobenzene	0.0508	0.0050	mg/kg wet			99	75-124			
1,3-Dichloropropane	0.0493	0.0050	mg/kg wet			101	71-123			
1,4-Dichlorobenzene	0.0505	0.0050	mg/kg wet			1119	50-142			
2,2-Dichloropropane	0.0594	0.0050	mg/kg wet			104	67-124			
2-Chlorotoluene	0.0521	0.0050	mg/kg wet			104	71-126			
4-Chlorotoluene	0.0529	0.0050	mg/kg wet			105	68-129			
4-isopropyltoluene	0.0525	0.0050	mg/kg wet	0.05000			29-198			
Acetone	0.0795	0.050	mg/kg wet	0.1000		79	23-190			

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

Attn: Christine Schaefer
7606 Whitehall Executive Center Drive, Suite
Charlotte, NC 28273

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5K0076 - 5035							·			
LCS (P5K0076-BS1)				Prepared	& Analyze	d: 11/06/1	5			
Benzene	0.0511	0.0030	mg/kg wet	0.05000		102	74-127			
Bromobenzene	0.0526	0.0050	mg/kg wet	0.05000		105	73-125			
Bromochloromethane	0.0486	0.0050	mg/kg wet	0.05000		97	72-134			
Bromodichloromethane	0.0529	0.0050	mg/kg wet	0.05000		106	75-122			
Bromoform	0.0415	0.0050	mg/kg wet	0.05000		83	66-135			
Bromomethane	0,0344	0.010	mg/kg wet	0.05000		69	20-180			
Carbon Tetrachloride	0.0545	0.0050	mg/kg wet	0.05000		109	64-143			
Chlorobenzene	0.0499	0.0050	mg/kg wet	0.05000		100	74-118			
Chloroethane	0.0474	0.010	mg/kg wet	0.05000		95	33-149			
Chloroform	0.0510	0.0050	mg/kg wet	0.05000		102	73-127			
Chloromethane	0.0316	0.0050	mg/kg wet			63	45-143			
cis-1,2-Dichloroethylene	0.0506	0.0050	mg/kg wet			101	76-134			
cis-1,3-Dichloropropylene	0.0554	0.0050	mg/kg wet			111	71-125			
Dibromochloromethane	0.0508	0.0050	mg/kg wet			102	73-122			
Dichlorodifluoromethane	0.0287	0.0050	mg/kg wet			57	26-146			
Ethylbenzene	0.0518	0.0050	mg/kg wet			104	74-128			
Isopropyl Ether	0.0461	0.0050	mg/kg wet	0.05000		92	59-159			
Isopropylbenzene (Cumene)	0,0582	0.0050	mg/kg wet			116	68-126			
m,p-Xylenes	0.108	0.010	mg/kg wet	0.1000		108	75-124			
Methyl Butyl Ketone (2-Hexanone)	0.0493	0.050	mg/kg wet			99	61-157			
Methyl Ethyl Ketone (2-Butanone)	0.0384	0.10	mg/kg wet			77	63-149			
Methyl Isobutyl Ketone	0.0473	0.050	mg/kg wet			95	57-162			
Methylene Chloride	0.0488	0.0050	mg/kg wet			97	74-129			
Methyl-tert-Butyl Ether	0,0448	0.010	mg/kg wet			90	70-130			
Naphthalene	0.0514	0.010	mg/kg wet			103	57-157			
n-Butylbenzene	0.0541	0.0050	mg/kg wet			108	65-135			
n-Propylbenzene	0.0548	0.0050	mg/kg wet			110	67-130			
o-Xylene	0.0536	0.0050				107	74-126			
sec-Butylbenzene	0.0577	0.0050	mg/kg wet			115	66-131			
Styrene	0.0529		mg/kg wet			106	77-121			
tert-Butylbenzene	0.0539	0.0050 0.0050	mg/kg wet mg/kg wet			108	67-132			
Tetrachloroethylene	0.0539	0.0050				100	68-130			
Toluene	0.0525	0.0050	mg/kg wet			101	71-129			
trans-1,2-Dichloroethylene	0.0525		mg/kg wet			103	73-132			
trans-1,3-Dichloropropylene		0.0050	mg/kg wet							
Trichloroethylene	0.0549	0.0050	mg/kg wet			110	68-123 75-123			
Trichlorofluoromethane	0.0510	0.0050	mg/kg wet			102	75-133			
	0.0410	0.0050	mg/kg wet			82	44-146			
Vinyl obloside	0.0406	0.025	mg/kg wet			81	85-161			
Vinyl chloride	0.0408	0.0050	mg/kg wet			82	48-147			
Xylenes, total	0.161	0.015	mg/kg wet	0.1500		107	74-126			
Surrogate: 4-Bromofluorobenzene	50.4		ug/L	50.00		101	70-130			
Surrogate: Dibromofluoromethane	49.2		ug/L	50.00		98	84-123			
Surrogate: Toluene-d8	50.8		ug/L	50.00		102	76-129			

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5K0076 - 5035										
LCS Dup (P5K0076-BSD1)				Prepared a	& Analyze	d: 11/06/1	5			
1,1,1,2-Tetrachloroethane	0.0520	0.0050	mg/kg wet	0.05000		104	72-115	0.4	20	
1,1,1-Trichloroethane	0.0529	0.0050	mg/kg wet	0.05000		106	67-131	0.5	20	
1,1,2,2-Tetrachloroethane	0.0510	0.0050	mg/kg wet	0.05000		102	56-126	0.5	20	
1,1,2-Trichloroethane	0.0482	0.0050	mg/kg wet	0.05000		96	70-133	0.7	20	
1,1-Dichloroethane	0.0506	0.0050	mg/kg wet	0.05000		101	74-127	0.5	20	
1,1-Dichloroethylene	0.0470	0.0050	mg/kg wet	0.05000		94	67-149	2	20	
,1-Dichloropropylene	0.0529	0.0050	mg/kg wet	0.05000		106	71-130	0.2	20	
,2,3-Trichlorobenzene	0.0512	0.0050	mg/kg wet	0.05000		102	68-130	0.3	20	
,2,3-Trichloropropane	0.0472	0.0050	mg/kg wet	0.05000		94	60-137	0.2	20	
,2,4-Trichlorobenzene	0.0514	0.0050	mg/kg wet	0.05000		103	66-125	0.5	20	
,2,4-Trimethylbenzene	0.0538	0.0050	mg/kg wet	0.05000		108	69-129	0.5	20	
,2-Dibromoethane	0.0482	0.0050	mg/kg wet			96	70-132	1	20	
,2-Dichlorobenzene	0.0497	0.0050	mg/kg wet			99	72-123	0.4	20	
,2-Dichloroethane	0.0477	0.0050	mg/kg wet			95	68-128	0.2	20	
,2-Dichloropropane	0.0515	0.0050	mg/kg wet			103	73-130	2	20	
,3,5-Trimethylbenzene	0.0530	0.0050	mg/kg wet			106	69-128	0.7	20	
,3-Dichlorobenzene	0.0508	0.0050	mg/kg wet		•	102	71-120	0	20	
,3-Dichloropropane	0.0487	0.0050	mg/kg wet			97	75-124	1	20	
,4-Dichlorobenzene	0.0504	0.0050	mg/kg wet			101	71-123	0.08	20	
,2-Dichloropropane	0.0590	0.0050	mg/kg wet			118	50-142	0.7	20	
-Chlorotoluene	0.0516	0.0050	mg/kg wet			103	67-124	1	20	
-Chlorotoluene	0.0526	0.0050	mg/kg wet			105	71-126	0.5	20	
-Isopropyltoluene	0.0528	0.0050	mg/kg wet			106	68-129	0.6	20	
cetone	0.0804	0.050	mg/kg wet	0.1000		80	29-198	1	20	
enzene	0.0514	0.0030	mg/kg wet			103	74-127	0.7	20	
romobenzene	0.0520	0.0050	mg/kg wet			104	73-125	1	20	
romochloromethane	0.0320	0.0050	mg/kg wet			95	72-134	2	20	
						104	75-122	1	20	
romodichloromethane	0.0521	0.0050	mg/kg wet				66-135	1	20	
romoform	0.0411	0.0050	mg/kg wet			82		5	20	
romomethane	0.0327	0.010	mg/kg wet			65	20-180	•	20	
Carbon Tetrachloride	0.0538	0.0050	mg/kg wet			108	64-143	1 .		
Chlorobenzene	0.0493	0.0050	mg/kg wet			99	74-118	1	20	
chloroethane	0.0479	0.010	mg/kg wet			96	33-149	1	20	
Chloroform	0.0507	0.0050	mg/kg wet	0.05000		101	73-127	0.6	20	
hloromethane	0.0350	0.0050	mg/kg wet			70	45-143	10	20	
is-1,2-Dichloroethylene	0.0501	0.0050	mg/kg wet			100	76-134	1	20	
is-1,3-Dichloropropylene	0.0547	0.0050	mg/kg wet	0.05000		109	71-125	1	20	
ibromochloromethane	0.0504	0.0050	mg/kg wet	0.05000		101	73-122	0.9	20	
ichlorodifluoromethane	0.0281	0.0050	mg/kg wet	0.05000		56	26-146	2	20	
thylbenzene	0.0515	0.0050	mg/kg wet	0.05000		103	74-128	0.4	20	
sopropyl Ether	0.0455	0.0050	mg/kg wet	0.05000		91	59-159	1	20	
sopropylbenzene (Cumene)	0.0577	0.0050	mg/kg wet	0.05000		115	68-126	8.0	20	
n,p-Xylenes	0.107	0.010	mg/kg wet	0.1000		107	75-124	0.1	20	
fethyl Butyl Ketone (2-Hexanone)	0.0498	0.050	mg/kg wet	0.05000		100	61-157	0.9	20	
Methyl Ethyl Ketone (2-Butanone)	0.0400	0.10	mg/kg wet	0.05000		80	63-149	4	20	
Methyl Isobutyl Ketone	0.0476	0,050	mg/kg wet			95	57-162	0.7	20	

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

Attn: Christine Schaefer 7606 Whitehall Executive Center Drive, Suite

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5K0076 - 5035										
LCS Dup (P5K0076-BSD1)				Prepared 8	& Analyze	d: 11/06/1	5	·		
Methylene Chloride	0.0486	0.0050	mg/kg wet	0.05000		97	74-129	0.2	20	
Methyl-tert-Butyl Ether	0.0438	0.010	mg/kg wet	0.05000		88	70-130	2	20	
Naphthalene	0.0516	0.010	mg/kg wet	0.05000		103	57-157	0.3	20	
n-Butylbenzene	0.0548	0.0050	mg/kg wet	0.05000		110	65-135	1	20	
n-Propylbenzene	0.0544	0.0050	mg/kg wet	0.05000		109	67-130	0.7	20	
o-Xylene	0.0535	0.0050	mg/kg wet	0.05000		107	74-126	0.3	20	
sec-Butylbenzene	0.0577	0.0050	mg/kg wet	0.05000		115	66-131	0.02	20	
Styrene	0.0527	0.0050	mg/kg wet	0.05000		105	77-121	0.4	20	
tert-Butylbenzene	0.0539	0.0050	mg/kg wet	0.05000		108	67-132	0.02	20	
Tetrachloroethylene	0.0501	0.0050	mg/kg wet	0.05000		100	68-130	1	20	
Toluene	0.0518	0.0050	mg/kg wet	0.05000		104	71-129	1	20	
trans-1,2-Dichloroethylene	0.0506	0.0050	mg/kg wet			101	73-132	2	20	
trans-1,3-Dichloropropylene	0.0542	0.0050	mg/kg wet			108	68-123	1	20	
Trichloroethylene	0.0505	0.0050	mg/kg wet			101	75-133	1	20	
Trichlorofluoromethane	0.0408	0.0050	mg/kg wet			82	44-146	0.5	20	
Vinyl acetate	0.0414	0.025	mg/kg wet			83	85-161	2	20	L
Vinyl chloride	0.0398	0.0050	mg/kg wet			80	48-147	2	20	
Xylenes, total	0.161	0.015	mg/kg wet	0.1500		107	74-126	0.2	20	
Surrogate: 4-Bromofluorobenzene	50.5		ug/L.	50.00		101	70-130			
Surrogate: Dibromofluoromethane	49.2		ug/L	50.00		98	84-123			
Surrogate: Toluene-d8	50.3		ug/L	50.00		101	76-129			
Matrix Spike (P5K0076-MS1)		urce: 511012	•		& Analyze	ed: 11/06/1				
1,1,1,2-Tetrachloroethane	0.0336	0.0062	mg/kg dry	0.04971	BRL	68	60-120			
1,1,1-Trichloroethane	0.0495	0.0062	mg/kg dry	0.04971	BRL	100	52-139			
1,1,2,2-Tetrachloroethane	0.0297	0.0062	mg/kg dry	0.04971	BRL	60	39-135			
1,1,2-Trichloroethane	0.0287	0.0062	mg/kg dry	0.04971	BRL	58	44-140			
1,1-Dichloroethane	0.0409	0.0062	mg/kg dry	0.04971	BRL	82	59-137			
1,1-Dichloroethylene	0.0485	0.0062	mg/kg dry	0.04971	BRL	98	54-162			
1,1-Dichloropropylene	0.0504	0.0062	mg/kg dry	0.04971	BRL	101	55-137			
1,2,3-Trichlorobenzene	0.0163	0.0062	mg/kg dry	0.04971	BRL	33	34-120			М
1,2,3-Trichloropropane	0.0280	0.0062	mg/kg dry	0.04971	BRL	56	45-139			
1,2,4-Trichlorobenzene	0.0162	0.0062	mg/kg dry		BRL	33	35-116			М
1,2,4-Trimethylbenzene	0.0383	0.0062	mg/kg dry		BRL	77	38-142			
1,2-Dibromoethane	0.0278	0.0062	mg/kg dry		BRL	56	49-132			
1,2-Dichlorobenzene	0.0252	0.0062	mg/kg dry	0.04971	BRL	51	42-130			
1,2-Dichloroethane	0.0299	0.0062	mg/kg dry	0.04971	BRL	60	51-131			
1,2-Dichloropropane	0.0364	0.0062	mg/kg dry	0.04971	BRL	73	55-138			
1,3,5-Trimethylbenzene	0.0423	0.0062	mg/kg dry	0.04971	BRL	85	44-140			
1,3-Dichlorobenzene	0.0307	0.0062	mg/kg dry		BRL	62	41-129			
1,3-Dichloropropane	0.0287	0.0062		0.04971	BRL	58	53-129			
1,4-Dichlorobenzene	0.0291	0.0062	mg/kg dry mg/kg dry		BRL.	58	44-134			
2,2-Dichloropropane	0.0528	0.0062								
2-Chlorotoluene			mg/kg dry	0.04971	BRL	106	30-147 46 132			
4-Chlorotoluene	0.0405	0.0062	mg/kg dry		BRL	81 77	46-132			
7-01101010101010	0.0381	0.0062	mg/kg dry	0.04971	BRL	77	44-135			
4-isopropyitoluene	0.0399	0.0062	mg/kg dry	0.04971	BRL	80	32-144			

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

7606 Whitehall Executive Center Drive, Suite Charlotte, NC 28273

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Nesun	LIIII	Onis	revei	resuit	70NEC	Lillies	1/1-10	Link	140163
Batch P5K0076 - 5035										
Matrix Spike (P5K0076-MS1)	Sou	rce: 511012	8-03	Prepared	& Analyze	d: 11/06/1	5			
Benzene	0.0409	0.0037	mg/kg dry		BRL	82	60-135			
Bromabenzene	0.0372	0.0062	mg/kg dry	0.04971	BRL	75	45-135			
Bromochloromethane	0.0318	0.0062	mg/kg dry	0.04971	BRL	64	55-136			
Bromodichloromethane	0.0354	0.0062	mg/kg dry	0.04971	BRL	71	55-127			
Bromoform	0.0250	0.0062	mg/kg dry	0.04971	BRL	50	40-136			
Bromomethane	0.0152	0.012	mg/kg dry	0.04971	BRL	31	30-137			
Carbon Tetrachloride	0.0545	0.0062	mg/kg dry	0.04971	BRL	110	48-153			
Chlorobenzene	0.0346	0.0062	mg/kg dry	0.04971	BRL	70	57-125			
Chloroethane	0.0392	0.012	mg/kg dry	0.04971	BRL	79	16-177			
Chloroform	0.0387	0.0062	mg/kg dry	0.04971	BRL	78	56-137			
Chloromethane	0.0187	0.0062	mg/kg dry	0.04971	BRL	38	40-145			M
cis-1,2-Dichloroethylene	0.0378	0.0062	mg/kg dry	0.04971	BRL	76	58-140			
cis-1,3-Dichloropropylene	0.0346	0.0062	mg/kg dry	0.04971	BRL	70	42-135			
Dibromochloromethane	0.0295	0.0062	mg/kg dry	0.04971	BRL	59	49-127			
Dichlorodifluoromethane	0.0255	0.0062	mg/kg dry	0.04971	BRL	51	25-151			
Ethylbenzene	0.0408	0.0062	mg/kg dry	0.04971	BRL	82	44-144			
Isopropyl Ether	0.0295	0.0062	mg/kg dry	0.04971	BRL	59	51-155			
Isopropylbenzene (Cumene)	0.0539	0.0062	mg/kg dry	0.04971	BRL	108	41-140			
m,p-Xylenes	0.0831	0.012	mg/kg dry	0.09942	BRL	84	36-148			
Methyl Butyl Ketone (2-Hexanone)	0.0220	0.062	mg/kg dry	0.04971	BRL	44	30-147			J
Methyl Ethyl Ketone (2-Butanone)	0.0217	0.12	mg/kg dry	0.04971	BRL	44	24-160			J
Methyl Isobutyl Ketone	0.0244	0.062	mg/kg dry	0.04971	BRL	49	25-163			J
Methylene Chloride	0.0350	0.0062	mg/kg dry	0.04971	BRL	70	53-144			
Methyl-tert-Butyl Ether	0.0255	0.012	mg/kg dry	0.04971	BRL	51	49-135			
Naphthalene	0.0166	0.012	mg/kg dry	0.04971	BRL	33	32-127			
n-Butylbenzene	0.0366	0.0062	mg/kg dry	0.04971	BRL	74	23-148			
n-Propylbenzene	0.0488	0.0062	mg/kg dry	0.04971	BRL	98	35-144			
o-Xylene	0.0381	0.0062	mg/kg dry	0.04971	BRL	77	43-143			
sec-Butylbenzene	0.0501	0.0062	mg/kg dry	0.04971	BRL	101	34-144			
Styrene	0.0334	0,0062	mg/kg dry	0.04971	BRL	67	42-132			
tert-Butylbenzene	0.0469	0.0062	mg/kg dry	0.04971	BRL	94	36-150			
Tetrachloroethylene	0.0461	0.0062	mg/kg dry	0.04971	BRL	93	47-142			
Toluene	0.0422	0,0062	mg/kg dry	0.04971	BRL	85	57-135			
trans-1,2-Dichloroethylene	0.0445	0.0062		0.04971	BRL	90	58-141			
trans-1,3-Dichloropropylene	0.0319	0.0062	mg/kg dry	0.04971	BRL	64	41-124			
Trichloroethylene	0.0440	0.0062	mg/kg dry		BRL	89	38-164			
Trichlorofluoromethane	0.0413		mg/kg dry		BRL	83	30-157			
Vinyl acetate	BRL	0.031	mg/kg dry		BRL		61-154			М
Vinyl decide	0.0331	0.0062	mg/kg dry		BRL	67	40-156			
Xylenes, total	0.121	0.019	mg/kg dry	0.1491	BRL	81	36-148			
	57.1		ug/L	50.00		114	70-130			
Surrogate: 4-Bromofluorobenzene Surrogate: Dibromofluoromethane	57.7 49.9		ug/L ug/L	50.00		100	84-123			
•	50.3		ug/L ug/L	50.00		101	76-129			
Surrogate: Toluene-d8	30.3		uy/L	50.00		,,,				

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P5K0151 - 3546										
Blank (P5K0151-BLK1)		<u>-</u>		Prepared:	11/09/15	Analyzed	: 11/10/15			
,2,4-Trichlorobenzene	BRL	0.33	mg/kg wet							
1,2-Dichlorobenzene	BRL	0.33	mg/kg wet							
1,3-Dichlorobenzene	BRL	0.33	mg/kg wet							
1,4-Dichlorobenzene	BRL	0.33	mg/kg wet							
I-Methylnaphthalene	BRL	0.33	mg/kg wet							
2,4,6-Trichlorophenol	BRL	0.33	mg/kg wet							
2,4-Dichlorophenol	BRL	0.33	mg/kg wet							
2,4-Dimethylphenol	BRL	0.33	mg/kg wet							
2,4-Dinitrophenol	BRL	0.33	mg/kg wet							
2,4-Dinitrotoluene	BRL	0.33	mg/kg wet							
2,6-Dinitrotoluene	BRL	0.33	mg/kg wet							
2-Chloronaphthalene	BRL	0.33	mg/kg wet							
2-Chlorophenol	BRL	0.33	mg/kg wet							
2-Methylnaphthalene	BRL	0.33	mg/kg wet							
2-Methylphenol	BRL	0.33	mg/kg wet							
2-Nitrophenol	BRL	0.33	mg/kg wet							
3,3'-Dichlorobenzidine	BRL	0.33	mg/kg wet		•					
3/4-Methylphenol	BRL	0.33	mg/kg wet							
4,6-Dinitro-2-methylphenol	BRL	0.33	mg/kg wet							
4-Bromophenyl phenyl ether	BRL	0.33	mg/kg wet							
4-Chloro-3-methylphenol	BRL	0.33	mg/kg wet							
4-Chloroaniline	BRL	0.33	mg/kg wet							
4-Chlorophenyl phenyl ether	BRL	0.33	mg/kg wet							
4-Nitrophenol	BRL	0.33	mg/kg wet							
Acenaphthene	BRL	0.33	mg/kg wet							
Acenaphthylene	BRL	0.33	mg/kg wet							
Anthracene	BRL	0.33	mg/kg wet							
Azobenzene	BRL	0.33	mg/kg wet							
Benzo(a)anthracene	BRL	0.33	mg/kg wet							
Benzo(a)pyrene	BRL	0.33	mg/kg wet							
Benzo(b)fluoranthene	BRL	0.33	mg/kg wet							
Benzo(g,h,i)perylene	BRL	0.33	mg/kg wet							
Benzo(k)fluoranthene	BRL	0.33								
Benzoic Acid	BRL	0,33								
Benzyl alcohol	BRL	0.33								
bis(2-Chloroethoxy)methane	BRL	0.33								
Bis(2-Chloroethyl)ether	BRL	0.33								
Bis(2-chloroisopropyl)ether	BRL	0.33								
Bis(2-Ethylhexyl)phthalate	BRL	0.33								
Butyl benzyl phthalate	BRL	0.33								
Chrysene	BRL	0.33								
Dibenzo(a,h)anthracene	BRL	0.33								
Dibenzofuran	BRL	0.33								
Diethyl phthalate	BRL	0.33								
Dimethyl phthalate	BRL	0.33								
Di-n-butyl phthalate	BRL	0.33								

Project: Kesler Mill.(Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

7606 Whitehall Executive Center Drive, Suite Charlotte, NC 28273

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P5K0151 - 3546										
Blank (P5K0151-BLK1)			F	repared:	11/09/15	Analyzed:	11/10/15			
Di-n-octyl phthalate	BRL	0.33	mg/kg wet							
Fluoranthene	BRL	0.33	mg/kg wet							
Fluorene	BRL	0.33	mg/kg wet							
Hexachlorobenzene	BRL	0.33	mg/kg wet							
Hexachlorobutadiene	BRL	0.33	mg/kg wet							
Hexachlorocyclopentadiene	BRL	0.33	mg/kg wet							
Hexachloroethane	BRL	0.33	mg/kg wet							
Indeno(1,2,3-cd)pyrene	BRL	0.33	mg/kg wet							
Isophorone	BRL	0.33	mg/kg wet							
Naphthalene	BRL	0.33	mg/kg wet							
Nitrobenzene	BRL	0.33	mg/kg wet							
N-Nitroso-di-n-propylamine	BRL	0.33	mg/kg wet							
N-Nitrosodiphenylamine	BRL	0.33	mg/kg wet							
Pentachlorophenol	BRL	0.33	mg/kg wet							
Phenanthrene	BRL	0.33	mg/kg wet							
Phenol	BRL	0.33	mg/kg wet							
Pyrene	BRL	0.33	mg/kg wet							
Surrogate: 2,4,6-Tribromophenol	2.47		mg/kg wet	3.333		74	39-132			
Surrogate: 2-Fluorobiphenyl	1.22		mg/kg wet	1.667		73	44-115			
Surrogate: 2-Fluorophenol	2.27		mg/kg wet	3.333		68	35-115			
Surrogate: Nitrobenzene-d5	1.06		mg/kg wet	1.667		64	37-122			
Surrogate: Phenol-d5	2.30		mg/kg wet	3.333		69	34-121			
Surrogate: Terphenyl-d14	1.24		mg/kg wet	1.667		74	54-127			
LCS (P5K0151-BS1)			F	repared:	11/09/15	Analyzed:	11/10/15			
1,2,4-Trichlorobenzene	0.997	0.33	mg/kg wet	1.666		60	34-118			
1,2-Dichlorobenzene	0.908	0.33	mg/kg wet	1.666		54	33-117			
1,3-Dichlorobenzene	0.864	0.33	mg/kg wet	1.666		52	30-115			
1,4-Dichlorobenzene	0.879	0.33	mg/kg wet	1.666		53	31-115			
1-Methylnaphthalene	1.12	0.33	mg/kg wet	1.666		67	40-119			
2,4,6-Trichlorophenol	1.21	0.33	mg/kg wet	1.666		73	39-126			
2,4-Dichlorophenol	1.13	0.33	mg/kg wet	1.666		68	40-122			
2,4-Dimethylphenol	1.10	0.33	mg/kg wet	1.666		66	30-127			
2,4-Dinitrophenol	0.920	0.33	mg/kg wet	1.666		55	27-129			
2,4-Dinitrotoluene	1.30	0.33	mg/kg wet	1.666		78	48-126			
2,6-Dinitrotoluene	1.21	0.33	mg/kg wet	1.666		73	46-124			
2-Chloronaphthalene	1.48	0.33	mg/kg wet	1.666		89	41-114			
2-Chlorophenol	1.03	0.33	mg/kg wet	1.666		62	34-121			
2-Methylnaphthalene	1.09	0.33	mg/kg wet	1.666		66	38-122			
2-Methylphenol	. 1.06	0.33	mg/kg wet	1.666		64	32-122			
2-Nitrophenol	1.07	0.33	mg/kg wet	1.666		64	36-123			
3,3'-Dichlorobenzidine	1.34	0.33	mg/kg wet	1.666		81	22-121			
3/4-Methylphenol	1.11	0.33	mg/kg wet	1.666		66	34-119			
4,6-Dinitro-2-methylphenol	1.20	0.33	mg/kg wet	1.666		72	29-132			
4-Bromophenyl phenyl ether	1.22	0.33	mg/kg wet	1.666		73	46-124			
4-Chloro-3-methylphenol	1.20	0.33	mg/kg wet	1.666		72	45-122			
4-Chloroaniline	1.08	0.33	mg/kg wet	1.666		65	17-106			
T-CHOIOGUMHE	1.00	0.03	.ng/kg wet	1,555						

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5K0151 - 3546										
LCS (P5K0151-BS1)			F	repared	: 11/09/15	Analyzed	: 11/10/15			
4-Chlorophenyl phenyl ether	1.17	0.33	mg/kg wet	1.666		70	45-121			
4-Nitrophenol	1.32	0.33	mg/kg wet	1.666		79	30-132			
Acenaphthene	1.27	0.33	mg/kg wet	1.666		76	40-123			
Acenaphthylene	1.23	0.33	mg/kg wet	1.666		74	32-132			
Anthracene	1.41	0.33	mg/kg wet	1.666		84	47-123			
Azobenzene	1.39	0.33	mg/kg wet	1.666		83	39-125			
Benzo(a)anthracene	1.35	0.33	mg/kg wet	1.666		81	49-126			
Benzo(a)pyrene	1.46	0.33	mg/kg wet	1.666		88	45-129			
Benzo(b)fluoranthene	1.31	0.33	mg/kg wet	1.666		78	45-132			
Benzo(g,h,i)perylene	1.33	0.33	mg/kg wet	1.666		80	43-134			
Benzo(k)fluoranthene	1.45	0.33	mg/kg wet	1.666		87	47-132			
Benzoic Acid	0.792	0.33	mg/kg wet	1.666		48	10-83			
Benzyl alcohol	1.05	0.33	mg/kg wet	1.666		63	29-122			
bis(2-Chloroethoxy)methane	0.960	0.33	mg/kg wet	1.666		58	36-121			
Bis(2-Chloroethyl)ether	0.893	0.33	mg/kg wet	1.666		54	31-120			
Bis(2-chloroisopropyl)ether	0.996	0.33	mg/kg wet	1.666		60	33-131			
Bis(2-Ethylhexyl)phthalate	1.33	0.33	mg/kg wet	1.666		80	51-133			
Butyl benzyl phthalate	1.29	0.33	mg/kg wet	1.666		78	48-132			
Chrysene	1.39	0.33	mg/kg wet	1.666		84	50-124			
Dibenzo(a,h)anthracene	1.33	0.33	mg/kg wet	1.666		80	45-134			
Dibenzofuran	1,24	0.33	mg/kg wet	1.666		74	44-120			
Diethyl phthalate	1.26	0.33	mg/kg wet	1.666		76	50-124			
Dimethyl phthalate	1.24	0.33	mg/kg wet	1.666		74	48-124			
Di-n-butyl phthalate	1,38	0.33	mg/kg wet	1.666		83	51-128			
Di-n-octyl phthalate	1.38	0.33	mg/kg wet	1.666		83	45-140			
Fluoranthene	1.40	0.33	mg/kg wet	1.666		84	50-127			
Fluorene	1.32	0.33	mg/kg wet	1.666		79	43-125			
Hexachlorobenzene	1.23	0.33	mg/kg wet	1.666		74	45-122			
Hexachlorobutadiene	0.965	0.33	mg/kg wet	1.666		58	32-123			
Hexachlorocyclopentadiene	0.969	0.33	mg/kg wet	1.666		58	32-117			
Hexachloroethane	0.866	0.33	mg/kg wet	1.666		52	28-117			
Indeno(1,2,3-cd)pyrene	1.20	0.33	mg/kg wet	1.666		72	45-133			
Isophorone	1,14	0.33	mg/kg wet	1.666		68	30-122			
Naphthalene	1.09	0.33	mg/kg wet	1.666		66	35-123			
Nitrobenzene	1.06	0.33	mg/kg wet	1.666		64	34-122			
N-Nitroso-di-n-propylamine	1.03	0.33	mg/kg wet	1.666		62	36-120			
N-Nitrosodiphenylamine	1,32	0.33				79	38-127			
Pentachlorophenol	1.28	0.33	mg/kg wet mg/kg wet	1.666 1.666		79 77	25-133			
Phenanthrene	1.35					81	50-121			
Phenol	1.06	0.33	mg/kg wet	1.666 1.666			34-121			
Pyrene		0.33 0.33	mg/kg wet			64 83				
	1.38	0.33	mg/kg wet	1.666		83	47-127		•	*
Surrogate: 2,4,6-Tribromophenol	2.57		mg/kg wet	3.332		77	39-132			
Surrogate: 2-Fluorobiphenyl	1.19		mg/kg wet			72	44-115			
Surrogate: 2-Fluorophenol	2.13		mg/kg wet			64	35-115 27-122			
Surrogate: Nitrobenzene-d5	1.02		mg/kg wet			61	37-122			
Surrogate: Phenol-d5	2.22	•	mg/kg wet	3.332		67	34-121			

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5K0151 - 3546										
LCS (P5K0151-BS1)			1	Prepared:	11/09/15 A	nalvzed:	11/10/15			
Surrogate: Terphenyl-d14	1.28		mg/kg wet	1.666		77	54-127			
LCS Dup (P5K0151-BSD1)					11/09/15 A	nalvzed:	11/10/15			
1,2,4-Trichlorobenzene	1.14	0.33	mg/kg wet	1.667	11/00/10 /(69	34-118	14	20	
1,2-Dichlorobenzene	1.06	0.33	mg/kg wet	1.667		64	33-117	16	20	
1,3-Dichlorobenzene	1.02	0.33	mg/kg wet	1.667		61	30-115	16	20	
1,4-Dichlorobenzene	1,04	0.33	mg/kg wet	1.667		63	31-115	17	20	
1-Methylnaphthalene	1.26	0.33	mg/kg wet	1.667		75	40-119	12	20	
2,4,6-Trichlorophenol	1.33	0.33	mg/kg wet	1.667		80	39-126	9	20	
2,4-Dichlorophenol	1.26	0.33	mg/kg wet	1.667		75	40-122	10	20	
2,4-Dimethylphenol	1.20	0.33	mg/kg wet	1.667		72	30-127	9	20	
2,4-Dinitrophenol	1.05	0.33	mg/kg wet	1.667		63	27-129	13	20	
2,4-Dinitrotoluene	1.36	0.33	mg/kg wet	1.667		82	48-126	4	20	
2,6-Dinitrotoluene	1.33	0.33	mg/kg wet	1.667		80	46-124	9	20	
2-Chloronaphthalene	1.63	0.33	mg/kg wet	1,667		98	41-114	10	20	
2-Chlorophenol	1.19	0.33	mg/kg wet	1.667		72	34-121	-14	20	
2-Methylnaphthalene	1.20	0.33	mg/kg wet	1.667		72	38-122	9	20	
2-Methylphenol	1.19	0.33	mg/kg wet	1.667		72	32-122	11	20	
2-Nitrophenol	1.19	0.33	mg/kg wet	1.667		72	36-123	11	20	
3,3'-Dichlorobenzidine	1.37	0.33	mg/kg wet	1.667		82	22-121	2	20	
3/4-Methylphenol	1.24	0.33	mg/kg wet	1.667		74	34-119	11	20	
4,6-Dinitro-2-methylphenol	1.31	0.33	mg/kg wet	1.667		79	29-132	9	20	,
4-Bromophenyl phenyl ether	1.32	0.33	mg/kg wet	1.667		79	46-124	8	20	,
4-Chloro-3-methylphenol	1.32	0.33	mg/kg wet	1.667		79	45-122	9	20	
4-Chloroaniline	1.12	0.33	mg/kg wet	1.667		67	17-106	4	20	
4-Chlorophenyl phenyl éther	1.27	0.33	mg/kg wet	1.667		76	45-121	8	20	
4-Nitrophenol	1.37	0.33	mg/kg wet	1.667		82	30-132	4	20	
Acenaphthene	1,38	0.33	mg/kg wet	1.667		83	40-123	8	20	
Acenaphthylene	1.34	0.33	mg/kg wet	1.667		80	32-132	8	20	
Anthracene	1.50	0.33	mg/kg wet	1.667		90	47-123	6	20	
Azobenzene	1.47	0.33	mg/kg wet	1.667		88	39-125	6	20	
Benzo(a)anthracene	1.44	0.33	mg/kg wet	1.667		86	49-126	6	20	
Benzo(a)pyrene	1.51	0.33	mg/kg wet	1.667		90	45-129	3	20	
Benzo(b)fluoranthene	1.36	0.33	m g /kg wet	1.667		82	45-132	4	20	
Benzo(g,h,i)perylene	1.38	0.33	mg/kg wet	1.667		83	43-134	3	20	
Benzo(k)fluoranthene	1.49	0.33	mg/kg wet	1.667		90	47-132	3	20	
Benzoic Acid	0.823	0.33	mg/kg wet	1.667		49	10-83	4	20	
Benzyl alcohol	1.19	0.33	mg/kg wet	1.667		71	29-122	13	20	
bis(2-Chloroethoxy)methane	1.07	0.33	mg/kg wet	1.667		64	36-121	11	20	
Bis(2-Chloroethyl)ether	1.02	0.33	mg/kg wet	1.667		61	31-120	14	20	
Bis(2-chloroisopropyl)ether	1.15	0.33	mg/kg wet	1.667		69	33-131	14	20	
Bis(2-Ethylhexyl)phthalate	1.39	0.33	mg/kg wet	1.667		83	51-133	4	20	
Butyl benzyl phthalate	1.37	0.33	mg/kg wet	1.667		82	48-132	5	20	
Chrysene	1.39	0.33	mg/kg wet	1.667		83	50-124	0.4	20	
Dibenzo(a,h)anthracene	1.38	0.33	mg/kg wet	1.667		83	45-134	4	20	
Dibenzofuran	1.32	0.33	mg/kg wet	1.667		79	44-120	6	20 20	
Diethyl phthalate	1.34	0.33	mg/kg wet	1.667		81	50-124	7		

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5K0151 - 3546										
-CS Dup (P5K0151-BSD1)				Prepared:	: 11/09/15	Analyzed	: 11/10/15	<u> </u>		
Dimethyl phthalate	1.33	0.33	mg/kg wet	1.667		80	48-124	8	20	
Di-n-butyl phthalate	1.46	0.33	mg/kg wet	1.667		88	51-128	6	20	
Di-n-octyl phthalate	1.43	0.33	mg/kg wet	1.667		86	45-140	3	20	
luoranthene	1.48	0.33	mg/kg wet	1.667		89	50-127	6	20	
Fluorene	1.41	0.33	mg/kg wet	1.667		84	43-125	6	20	
lexachlorobenzene	1.34	0.33	mg/kg wet	1.667		81	45-122	9	20	
lexachlorobutadiene	1.12	0.33	mg/kg wet	1.667		67	32-123	15	20	
Hexachlorocyclopentadiene	1.14	0.33	mg/kg wet	1.667		68	32-117	16	20	
lexachloroethane	1,02	0.33	mg/kg wet	1.667		61	28-117	17	20	
ndeno(1,2,3-cd)pyrene	1.31	0.33	mg/kg wet	1.667		78	45-133	9	20	
sophorone	1.27	0.33	mg/kg wet	1,667		76	30-122	11	20	
Naphthalene	1.24	0.33	mg/kg wet	1.667		74	35-123	12	20	
Vitrobenzene	1.19	0.33	mg/kg wet	1.667		71	34-122	12	20	
N-Nitroso-di-n-propylamine	1.18	0.33	mg/kg wet	1.667		71	36-120	14	20	
N-Nitrosodiphenylamine	1.41	0.33	mg/kg wet	1.667		85	38-127	7	20	
Pentachlorophenol	1.39	0.33	mg/kg wet	1.667		84	25-133	8	20	
Phenanthrene	1.45	0.33	mg/kg wet	1.667		87	50-121	7	20	
Phenol	1.19	0.33	mg/kg wet	1.667		71	34-121	11	20	
Pyrene	1.46	0.33	mg/kg wet	1.667		87	47-127	5	20	
Surrogate: 2,4,6-Tribromophenol		0.00						J	20	
Surrogate: 2,4,6-111biomophenoi Surrogate: 2-Fluorobiphenyl	2.73 1.32		mg/kg wet	3.333		82 79	39-132 44-115			
Surrogate: 2-Fluorophenol	2.44		mg/kg wet	1.667		7 9 73	35-115			
Surrogate: Nitrobenzene-d5	2.44 1.16		mg/kg wet mg/kg wet	3.333 1.667		73 70	35-115 37-122			
Surrogate: Phenol-d5	2.45		mg/kg wet	3.333		74	34-121			
Surrogate: Terphenyl-d14	1.34		mg/kg wet	1.667		80	54-127			
			• •							
Matrix Spike (P5K0151-MS1)		rce: 511012					l: 11/10/15			
1,2,4-Trichlorobenzene	1,42	0.42	mg/kg dry	2.142	BRL	66	34-118			
1,2-Dichlorobenzene	1.30	0.42	mg/kg dry	2.142	BRL	60	33-117			
1,3-Dichlorobenzene	1.22	0.42	mg/kg dry	2.142	BRL	57	30-115			
1,4-Dichlorobenzene	1.24	0.42	mg/kg dry	2.142	BRL	58	31-115			
1-Methylnaphthalene	1.64	0.42	mg/kg dry	2.142	0.125	71	40-119			
2,4,6-Trichlorophenol	1.26	0.42	mg/kg dry	2.142	BRL	59	39-126			
2,4-Dichlorophenol	1.25	0.42	mg/kg dry	2.142	BRL	58	40-122			
2,4-Dimethylphenol	0.419	0.42	mg/kg dry	2.142	BRL	20	30-127			M
2,4-Dinitrophenol	0.290	0.42	mg/kg dry	2.142	BRL	14	27-129			N
2,4-Dinitrotoluene	1.58	0.42	mg/kg dry	2.142	BRL	74	48-126			
2,6-Dinitrotoluene	1.57	0.42	mg/kg dry	2.142	BRL	73	46-124			
2-Chioronaphthalene	1.95	0.42	mg/kg dry	2.142	BRL	91	41-114			
2-Chiorophenol	1.09	0.42	mg/kg dry	2.142	BRL	51	34-121			
2-Methylnaphthalene	1.65	0.42	mg/kg dry	2.142	0.151	70	38-122			
2-Methylphenol	0.754	0.42	mg/kg dry	2.142	BRL	35	32-122			
2-Nitrophenol	1.35	0.42	mg/kg dry	2.142	BRL	63	36-123			
3,3'-Dichlorobenzidine	0.250	0.42	mg/kg dry	2.142	BRL	12	22-121			N
3/4-Methylphenol	0.696	0.42	mg/kg dry	2.142	BRL	33	34-119			
4,6-Dinitro-2-methylphenol	0.384	0.42	mg/kg dry	2.142	BRL	18	29-132			٨
4-Bromophenyl phenyl ether	1.73	0.42	mg/kg dry	2.142	BRL	81	46-124			

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

Attn: Christine Schaefer
7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P5K0151 - 3546										
Matrix Spike (P5K0151-MS1)	So	urce: 511012	8-03	Prepared	11/09/15	Analyzed	: 11/10/15			
4-Chloro-3-methylphenol	1.32	0.42	mg/kg dry	2.142	BRL	62	45-122			
4-Chloroaniline	0.995	0.42	mg/kg dry	2.142	BRL	46	17-106			
4-Chlorophenyl phenyl ether	1.62	0.42	mg/kg dry	2.142	BRL	75	45-121			
4-Nitrophenol	1.86	0.42	mg/kg dry	2.142	BRL	87	30-132			
Acenaphthene	1.86	0.42	mg/kg dry	2.142	0.222	77	40-123			
Acenaphthylene	2.11	0.42	mg/kg dry	2.142	0.875	58	32-132			
Anthracene	2.63	0.42	mg/kg dry	2.142	1.44	56	47-123			
Azobenzene	1.94	0.42	mg/kg dry	2.142	BRL	90	39-125			
Benzo(a)anthracene	3.76	0.42	mg/kg dry	2.142	2.27	70	49-126			
Benzo(a)pyrene	2.99	0.42	mg/kg dry	2.142	1.68	61	45-129			
Benzo(b)fluoranthene	3.88	0.42	mg/kg dry	2.142	2.19	79	45-132			
Benzo(g,h,i)perylene	2.57	0.42	mg/kg dry	2.142	0,853	80	43-134			
Benzo(k)fluoranthene	2.22	0.42	mg/kg dry	2.142	0.919	61	47-132			
Benzoic Acid	1.74	0.42	mg/kg dry	2.142	BRL	81	10-83			
Benzyl alcohol	1.45	0.42	mg/kg dry	2.142	BRL	67	29-122			
bis(2-Chloroethoxy)methane	1.30	0.42	mg/kg dry	2.142	BRL	61	36-121			
Bis(2-Chloroethyl)ether	1.29	0.42	mg/kg dry	2.142	BRL	60	31-120			
Bis(2-chloroisopropyl)ether	1.45	0.42	mg/kg dry	2.142	BRL	68	33-131			
Bis(2-Ethylhexyl)phthalate	1.88	0.42	mg/kg dry	2.142	BRL	88	51-133			
Butyl benzyl phthalate	1.91	0.42	mg/kg dry	2.142	BRL	89	48-132			
Chrysene	3.38	0.42	mg/kg dry	2.142	1.84	72	50-124			
Dibenzo(a,h)anthracene	2.10	0.42	mg/kg dry	2.142	0.238	87	45-134			
Dibenzofuran	1.96	0.42	mg/kg dry	2.142	0.419	72	44-120			
Diethyl phthalate	1,75	0.42	mg/kg dry	2.142	BRL	81	50-124			
Dimethyl phthalate	1.73	0.42	mg/kg dry	2.142	BRL	81	48-124			
Di-n-butyl phthalate	2.00	0.42	mg/kg dry	2.142	BRL	93	51-128			
Di-n-octyl phthalate	1.95	0.42	mg/kg dry	2.142	BRL	91	45-140			
Fluoranthene	5.15	0.42	mg/kg dry	2.142	4.58	26	50-127			М
Fluorene	2.04	0.42	mg/kg dry	2.142	0.356	79	43-125			
Hexachlorobenzene	1,80	0.42	mg/kg dry		BRL	84	45-122			
Hexachlorobutadiene	1.42	0.42	mg/kg dry		BRL	66	32-123			
Hexachlorocyclopentadiene	0.230	0.42	mg/kg dry		BRL	11	32-117			M, J
Hexachloroethane	0.912	0.42	mg/kg dry		BRL	43	28-117			
Indeno(1,2,3-cd)pyrene	2.85	0.42	mg/kg dry		0.924	90	45-133			
Isophorone	1.59	0.42	mg/kg dry		BRL	74	30-122			
Naphthalene	1.68	0.42	mg/kg dry		0.182	70	35-123			
Nitrobenzene	1.48	0.42	mg/kg dry		BRL	69	34-122			
N-Nitroso-di-n-propylamine	1.43	0.42	mg/kg dry		BRL	67	36-120			
N-Nitrosodiphenylamine	1.08	0.42	mg/kg dry		BRL	50	38-127			
Pentachlorophenol	1.69	0.42	mg/kg dry		BRL	79	25-133			
Phenanthrene	4.59	0.42	mg/kg dry		4.48	5	50-121			М
Phenol	1,03	0.42	mg/kg dry		BRL	48	34-121			
Pyrene	4.84	0.42	mg/kg dry		3.97	40	47-127			M
		0. 72			,	58	39-132			
Surrogate: 2,4,6-Tribromophenol	2.47		mg/kg dry			74	44-115			
Surrogate: 2-Fluorobiphenyl	1.60 1.03		mg/kg dry			45	35-115			
Surrogate: 2-Fluorophenol	1.92		mg/kg dry	7,200		-75	00 770			

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

Attn: Christine Schaefer 7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	resuit	Littille	Office	Level	resuit	7011LO	Lilling	- IN D	Limit	Hotes
Batch P5K0151 - 3546								·		
Matrix Spike (P5K0151-MS1)		ce: 5110128		<u> </u>	11/09/15	Analyzed				
Surrogate: Nitrobenzene-d5	1.41		mg/kg dry	2.142		66	37-122			
Surrogate: Phenol-d5	2.21		mg/kg dry	4.283		52	34-121			
Surrogate: Terphenyl-d14	1.82		mg/kg dry	2.142		85	54-127			
Matrix Spike Dup (P5K0151-MSD1)	Sour	ce: 5110128	3-03	Prepared:	11/09/15	Analyzed	: 11/10/15			
1,2,4-Trichlorobenzene	1,40	0.42	mg/kg dry	2.142	BRL	65	34-118	1	20	
1,2-Dichlorobenzene	1.27	0.42	mg/kg dry	2.142	BRL	59	33-117	2	20	
1,3-Dichlorobenzene	1.20	0.42	mg/kg dry	2.142	BRL	56	30-115	1	20	
1,4-Dichlorobenzene	1.24	0.42	mg/kg dry	2.142	BRL	58	31-115	0.2	20	
I-Methylnaphthalene	1.61	0.42	mg/kg dry	2.142	0.125	69	40-119	2	20	*
2,4,6-Trichlorophenol	1.31	0.42	mg/kg dry	2.142	BRL	61	39-126	4	20	
2,4-Dichlorophenol	1.30	0.42	mg/kg dry	2.142	BRL.	61	40-122	4	20	
2,4-Dimethylphenol	0.429	0.42	mg/kg dry	2,142	BRL	20	30-127	2	20	
2,4-Dinitrophenol	0.308	0.42	mg/kg dry	2.142	BRL	14	27-129	6	20	M
2,4-Dinitrotoluene	1,61	0.42	mg/kg dry	2,142	BRL	75	48-126	1	20	
2,6-Dinitrotoluene	1.59	0.42	mg/kg dry	2.142	BRL	74	46-124	1	20	
2-Chloronaphthalene	1.93	0.42	mg/kg dry	2.142	BRL	90	41-114	0.9	20	
2-Chlorophenol	1.13	0.42	mg/kg dry	2.142	BRL	53	34-121	3	20	
2-Methylnaphthalene	1.58	0.42	mg/kg dry	2.142	0.151	67	38-122	4	20	
2-Methylphenol	0.783	0.42	mg/kg dry	2.142	BRL	37	32-122	4	20	
2-Nitrophenol	1.35	0.42	mg/kg dry	2.142	BRL	63	36-123	0.03	20	
3,3'-Dichlorobenzidine	0.272	0.42	mg/kg dry	2.142	BRL	13	22-121	8	20	N
3/4-Methylphenol	0.727		mg/kg dry			34	34-119	4	20	14
4,6-Dinitro-2-methylphenol	0.414	0.42			BRL.	19	29-132	8	20	N
• •		0.42	mg/kg dry	2.142	BRL					IV
4-Bromophenyl phenyl ether	1.68	0.42	mg/kg dry	2,142	BRL	79	46-124	3	20	
4-Chloro-3-methylphenol	1.34	0.42	mg/kg dry	2.142	BRL	62	45-122	1	20	
4-Chloroaniline	0.978	0.42	mg/kg dry	2,142	BRL	46	17-106	2	20	
4-Chlorophenyl phenyl ether	1.63	0.42	mg/kg dry		BRL	76	45-121	1	20	
4-Nitrophenol	1.85	0.42	mg/kg dry	2.142	BRL	86	30-132	0.3	20	
Acenaphthene	1.83	0.42	mg/kg dry	2.142	0.222	75	40-123	2	20	
Acenaphthylene	2.04	0.42	mg/kg dry	2.142	0.875	55	32-132	3	20	
Anthracene	2.56	0.42	mg/kg dry	2.142	1.44	53	47-123	3	20	
Azobenzene	1.97	0.42	mg/kg dry	2.142	BRL	92	39-125	2	20	
Benzo(a)anthracene	3.38	0.42	mg/kg dry	2.142	2.27	52	49-126	11	20	
Benzo(a)pyrene	2.75	0.42	mg/kg dry	2.142	1.68	50	45-129	8	20	
Benzo(b)fluoranthene	3.14	0.42	mg/kg dry	2.142	2.19	44	45-132	21	20	
Benzo(g,h,i)perylene	2.42	0.42	mg/kg dry	2.142	0.853	73	43-134	6	20	
Benzo(k)fluoranthene	2.49	0.42	mg/kg dry	2.142	0.919	73	47-132	11	20	
Benzoic Acid	1.83	0.42	mg/kg dry	2.142	BRL	86	10-83	5	20	
Benzyl alcohol	1.41	0.42	mg/kg dry	2.142	BRL	66	29-122	2	20	
bis(2-Chloroethoxy)methane	1.30	0.42	mg/kg dry		BRL	61	36-121	0.03	20	
Bis(2-Chloroethyl)ether	1.31	0.42	mg/kg dry		BRL	61	31-120	1	20	
Bis(2-chloroisopropyl)ether	1.44	0.42	mg/kg dry		BRL	67	33-131	0.6	20	
Bis(2-Ethylhexyl)phthalate	1.87	0.42	mg/kg dry		BRL	87	51-133	0.8	20	
Butyl benzyl phthalate	1.87	0.42	mg/kg dry		BRL	87	48-132	2	20	
Chrysene	3.12	0.42			1.84	60	50-124	8	20	
Dibenzo(a,h)anthracene	2.02	0.42			0.238	83	45-134	4	20	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5K0151 - 3546										
Matrix Spike Dup (P5K0151-MSD1)	Sour	ce: 511012	8-03	Prepared:	11/09/15	Analyzed	: 11/10/15			
Dibenzofuran	1.98	0.42	mg/kg dry	2.142	0.419	73	44-120	1	20	
Diethyl phthalate	1.78	0.42	mg/kg dry	2.142	BRL	83	50-124	2	20	
Dimethyl phthalate	1.69	0.42	mg/kg dry	2.142	BRL	79	48-124	2	20	
Di-n-butyl phthalate	1.95	0.42	mg/kg dry	2.142	BRL	91	51-128	3	20	
Di-n-octyl phthalate	1.90	0.42	mg/kg dry	2.142	BRL	89	45-140	3	20	
Fluoranthene	4.80	0.42	mg/kg dry	2.142	4.58	10	50-127	7	20	M
Fluorene	1.98	0.42	mg/kg dry	2.142	0.356	76	43-125	3	20	
Hexachlorobenzene	1.79	0.42	mg/kg dry	2.142	BRL	84	45-122	0.2	20	
Hexachlorobutadiene	1.42	0.42	mg/kg dry	2.142	BRL	66	32-123	0	20	
Hexachlorocyclopentadiene	0.220	0.42	mg/kg dry	2.142	BRL	10	32-117	5	20	М, Ј
Hexachloroethane	0.876	0.42	mg/kg dry	2.142	BRL	41	28-117	4	20	
Indeno(1,2,3-cd)pyrene	2.69	0.42	mg/kg dry	2.142	0.924	82	45-133	6	20	
Isophorone	1.54	0.42	mg/kg dry	2.142	BRL	72	30-122	3	20	
Naphthalene	1.66	0.42	mg/kg dry	2.142	0.182	69	35-123	1	20	
Nitrobenzene	1.45	0.42	mg/kg dry	2.142	BRL	68	34-122	2	20	
N-Nitroso-di-n-propylamine	1.37	0.42	mg/kg dry	2.142	BRL	64	36-120	4	20	
N-Nitrosodiphenylamine	1.13	0.42	mg/kg dry	2.142	BRL	53	38-127	4	20	
Pentachiorophenol	1.72	0.42	mg/kg dry	2.142	BRL	81	25-133	2	20	
Phenanthrene	4.67	0.42	mg/kg dry	2.142	4.48	9	50-121	2	20	М
Phenol	1.04	0.42	mg/kg dry	2.142	BRL	49.	34-121	1	20	
Pyrene	4.35	0.42	mg/kg dry	2.142	3.97	18	47-127	11	20	M
Surrogate: 2,4,6-Tribromophenol	2.57		mg/kg dry	4.283		60	39-132			
Surrogate: 2-Fluorobiphenyl	1.58		mg/kg dry	2.142		74	44-115			
Surrogate: 2-Fluorophenol	1.97		mg/kg dry	4.283		46	35-115		•	
Surrogate: Nitrobenzene-d5	1.37		mg/kg dry	2.142		64	37-122			
Surrogate: Phenol-d5	2.23		mg/kg dry	4.283		52	34-121			
Surrogate: Terphenyl-d14	1.81		mg/kg dry	2.142		84	54-127			

RPD

Cardno - Charlotte

Project: Kesler Mill (Brownfield)

Reporting

Prism Work Order: 5110128

%REC

Time Submitted: 11/5/2015 4:40:00PM

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Polychlorinated Biphenyls (PCBs) by GC/ECD - Quality Control

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P5K0247 - 3546						···				
Blank (P5K0247-BLK1)			1	Prepared	& Analyze	d: 11/12/1	5			_
Aroclor 1016	BRL	0.050	mg/kg wet							
Aroclor 1221	BRL	0.10	mg/kg wet							
Aroclor 1232	BRL	0.10	mg/kg wet							
Aroclor 1242	BRL	0.050	mg/kg wet							
Aroclor 1248	BRL	0.050	mg/kg wet							
Aroclor 1254	BRL	0.050	mg/kg wet							
Aroclor 1260	BRL	0.050	mg/kg wet							
Surrogate: Tetrachloro-m-xylene	0.0173		mg/kg wet	0.03331		52	36-182			
Surrogate: Decachlorobiphenyl	0.0240		mg/kg wet	0.03331		72	34-182		4	•
LCS (P5K0247-BS1)				Prepared	& Analyze	ed: 11/12/1	15			
Aroclor 1016	0.231	0.050	mg/kg wet	0.3332		69	64-151			
Aroclor 1260	0.249	0.050	mg/kg wet	0.3332		75	45-166			
Surrogate: Tetrachloro-m-xylene	0.0197		mg/kg wet	0.03332		59	36-182			
Surrogate: Decachlorobiphenyl	0.0260		mg/kg wet	0.03332		78	34-182			
LCS Dup (P5K0247-BSD1)				Prepared	& Analyze	ed: 11/12/1	15			
Aroclor 1016	0.252	0.050	mg/kg wet	0.3330		76	64-151	9	50	
Aroclor 1260	0.278	0.050	mg/kg wet	0.3330		84	45-166	11	50	
Surrogate: Tetrachioro-m-xylene	0.0210		mg/kg wet	0.03330		63	36-182			
Surrogate: Decachlorobiphenyl	0.0293		mg/kg wet			88	34-182			

Spike

Source

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Gasoline Range Organics by GC/FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5K0162 - 5035										
Blank (P5K0162-BLK1)				Prepared	& Analyze	d: 11/09/1	5			
Gasoline Range Organics	BRL	5,0	mg/kg wet							
Surrogate: a,a,a-Trifluorotoluene	4.35		mg/kg wet	5.000		87	50-137			
LCS (P5K0162-BS1)				Prepared	& Analyze	d: 11/09/1	5			
Gasoline Range Organics	44.4	5.0	mg/kg wet	50.00		89	41-138			
Surrogate: a,a,a-Trifluorotoluene	5.10		mg/kg wet	5.000		102	50-137			
LCS Dup (P5K0162-BSD1)				Prepared	& Analyze	d: 11/09/1	5			
Gasoline Range Organics	49.0	5.0	mg/kg wet	50.00		98	41-138	10	20	
Surrogate: a,a,a-Trifluorotoluene	5.35		mg/kg wet	5.000		107	50-137			

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

Attn: Christine Schaefer 7606 Whitehall Executive Center Drive, Suite

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P5K0149 - 3050B							
llank (P5K0149-BLK1)			Р	repared & Ana	alyzed: 11/09/1	5	
luminum	BRL	2.5	mg/kg wet				
ntimony	BRL	0,25	mg/kg wet				
rsenic	BRL	0.25	mg/kg wet				
Barium	BRL	0.50	mg/kg wet				
Beryllium	BRL	0.25	mg/kg wet				
admium	BRL	0.25	mg/kg wet				
Calcium	BRL	10	mg/kg wet				
Chromium	BRL	0.25	mg/kg wet				
Cobalt	BRL	0.25	mg/kg wet				
Copper	BRL	0.50	mg/kg wet				
ron	BRL	5.0	mg/kg wet				
ead	BRL	0.25	mg/kg wet				
/lagnesium	BRL	2.5	mg/kg wet				
Manganese	BRL	0.25	mg/kg wet				
lickel	BRL	0.50	mg/kg wet				
Potassium	BRL	12	mg/kg wet				
Selenium	BRL	0.50	mg/kg wet				
Silver	BRL	0.25	mg/kg wet				
Sodium	BRL	15	mg/kg wet				
hallium	BRL	0.50	mg/kg wet				
/anadium	BRL	0.25	mg/kg wet				
Zinc	BRL	2.5	mg/kg wet				
_CS (P5K0149-BS1)			F	repared & An	alyzed: 11/09/1	5	
Aluminum	532	2.5	mg/kg wet	500.0	106	80-120	
Antimony	25.3	0.25	mg/kg wet	25.00	101	80-120	
Arsenic	26.4	0.25	mg/kg wet	25.00	106	80-120	
Barium	26.3	0.50	mg/kg wet	25.00	105	80-120	
3eryllium	27.0	0.25	mg/kg wet	25.00	108	80-120	
Cadmium	26.2	0.25	mg/kg wet	25.00	105	80-120	
Calcium	529	10	mg/kg wet	500.0	106	80-120	
Chromium	26.6	0.25	mg/kg wet	25.00	107	80-120	
Cobalt	26.3	0.25	mg/kg wet	25.00	105	80-120	
Copper	27.7	0.50	mg/kg wet	25.00	111	80-120	
iron	531	5.0	mg/kg wet	500.0	106	80-120	
Lead	26.0	0.25	mg/kg wet	25.00	104	80-120	
Magnesium	528	2.5	mg/kg wet	500.0	106	80-120	
Manganese	26.5	0.25	mg/kg wet	25.00	106	80-120	
Nickel	26.2	0.25	mg/kg wet	25.00	105	80-120	
Potassium	537		mg/kg wet	500.0	103	80-120	
Selenium	26.3	12 0.50	mg/kg wet	25.00	107	80-120	
Silver						80-120	
	10.2	0.25	mg/kg wet	10.00	102·		
Sodium Thallium	563	15	mg/kg wet	500.0	113	80-120	
i nailium Vanadium	26.0 26.9	0.50 0.25	mg/kg wet mg/kg wet	25.00 25.00	104 108	80-120 80-120	

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

7606 Whitehall Executive Center Drive, Suite Charlotte, NC 28273

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P5K0149 - 3050B										
Matrix Spike (P5K0149-MS1)	Sour	rce: 511012	8-03	Prepared:	11/09/15	Analyzed:	11/12/15			
Aluminum	3.21E10	3.2	mg/kg dry	642.5	20000	NR	75-125			М
Antimony	6.26	0.32	mg/kg dry	32.13	0.0899	19	75-125			M
Arsenic	26.2	0.32	mg/kg dry	32.13	6.18	62	75-125			٨
Barium	89.2	0.64	mg/kg dry	32.13	18.1	222	75-125			٨
Beryllium	28.6	0.32	mg/kg dry	32.13	0.305	88	75-125			
Cadmium	25.0	0.32	mg/kg dry	32.13	0.149	77	75-125			
Calcium	948	13	mg/kg dry	642.5	286	103	75-125			
Chromium	52.0	0.32	mg/kg dry	32.13	22.0	93	75-125			
Cobalt	61.4	0.32	mg/kg dry	32.13	0.971	188	75-125			N
Copper	87.2	0.64	mg/kg dry	32.13	1.05	268	75-125			N
ron	3.21E10	6.4	mg/kg dry	642.5	16600	NR	75-125			M
_ead	39.1	0.32	mg/kg dry	32.13	9.29	93	75-125			
Magnesium	1630	3.2	mg/kg dry	642.5	680	148	75-125			N
- Manganese	2180	0.32	mg/kg dry	32.13	9.15	NR	75-125			M
Nickel	38.6	0.64	mg/kg dry	32.13	3.28	110	75-125			
Potassium	1600	16	mg/kg dry	642.5	441	180	75-125			N
Selenium	19.4	0.64	mg/kg dry	32.13	0.179	60	75-125			M
Silver	10.2	0.32	mg/kg dry	12.85	BRL	79	75-125			
Sodium	624	19	mg/kg dry	642.5	53.4	89	75-125			
Гhallium	24.0	0.64	mg/kg dry	32.13	BRL	75	75-125			
Vanadium	138	0.32	mg/kg dry	32.13	34.6	322	75-125			M
Zinc	92.1	3.2	mg/kg dry	32.13	7.72	263	75-125			M
Matrix Spike Dup (P5K0149-MSD1)	Sour	ce: 511012	8-03	Prepared:	11/09/15	Analyzed:	11/12/15			
Aluminum	3,21E10	3.2	mg/kg dry	642.5	20000	NR	75-125	0	20	M
Antimony	8.97	0.32	mg/kg dry	32.13	0.0899	28	75-125	36	20	D, M
Arsenic	28.9	0.32	mg/kg dry	32.13	6.18	71	75-125	10	20	M
Barium	98.6	0.64	mg/kg dry	32.13	18.1	251	75-125	10	20	M
Beryllium	30.4	0.32	mg/kg dry	32.13	0.305	94	75-125	6	20	
Cadmium	26.7	0.32	mg/kg dry	32.13	0.149	83	75-125	6	20	
Calcium	1070	13	mg/kg dry	642.5	286	122	75-125	12	20	
Chromium	52.4	0.32	mg/kg dry	32.13	22.0	94	75-125	0.7	20	
Cobalt	64.0	0.32	mg/kg dry	32.13	0.971	196	75-125	4	20	M
Copper	88.6	0.64	mg/kg dry	32.13	1.05	273	75-125	2	20	M
ron	3.21E10	6.4	mg/kg dry	642.5	16600	NR	75-125	0	20	М
Lead	42.6	0.32	mg/kg dry	32.13	9,29	104	75-125	8	20	
Magnesium	1760	3.2	mg/kg dry	642.5	680	168	75-125	7	20	M
Manganese	2520	0.32	mg/kg dry	32.13	9.15	NR	75-125	14	20	M
<u> </u>		0.52		32.13	3.28	118	75-125	6	20	
Nickel Potassium	. 41.1		mg/kg dry			188	75-125 75-125	3	20	M
Potassium	1650	16	mg/kg dry	642.5	441		75-125 75-125	10	20	M
Selenium	21.5	0.64	mg/kg dry	32.13 12.85	0.179 BRL	66 83	75-125 75-125	5	20	14
Silver	10.7	0.32	mg/kg dry	12.85		83 95		6	20	
Sodium	661	19	mg/kg dry	642.5	53.4	95 en	75-125 75-125	7	20	
hallium	25.6	0.64	mg/kg dry	32.13	BRL	80	75-125 75-125			M
/anadium	143	0.32	mg/kg dry	32.13	34.6	338	75-125	4	20 (IV.

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5K0149 - 3050B										
Post Spike (P5K0149-PS1)	Sou	rce: 511012	8-03	Prepared:	11/09/15	Analyzed	: 11/10/15			
Aluminum	19800	3.2	mg/kg dry	642.5	20000	NR	80-120			МС
Antimony	30.0	0.32	mg/kg dry	32.13	0.0899	93	80-120			
Arsenic	37.6	0.32	mg/kg dry	32.13	6.18	. 98	80-120			
Barium	47.5	0.64	mg/kg dry	32.13	18.1	92	80-120			
Beryllium	32.3	0.32	mg/kg dry	32.13	0.305	100	80-120			
Cadmium	30.8	0.32	mg/kg dry	32,13	0.149	95	80-120			
Calcium	860	13	mg/kg dry	642.5	286	89	80-120			
Chromium	51.9	0.32	mg/kg dry	32.13	22.0	93	80-120			
Cobalt	31.4	0.32	mg/kg dry	32.13	0.971	95	80-120			
Copper	35.7	0.64	mg/kg dry	32.13	1.05	108	80-120			
Iron	9800	6.4	mg/kg dry	642.5	16600	NR	80-120			MC
Lead	38.9	0.32	mg/kg dry	32.13	9.29	92	80-120			
Magnesium	1260	3.2	mg/kg dry	642.5	680	90	80-120			
Manganese '	39.3	0.32	mg/kg dry	32.13	9.15	94	80-120			
Nickel	33.8	0.64	mg/kg dry	32.13	3.28	95	80-120			
Potassium	1120	16	mg/kg dry	642.5	441	106	80-120			
Selenium	31.6	0.64	mg/kg dry	32.13	0.179	98	80-120			
Silver	12.4	0.32	mg/kg dry	12.85	BRL	96	80-120			
Sodium	. 748	19	mg/kg dry	642.5	53.4	108	80-120			
Thallium	30.0	0.64	mg/kg dry	32,13	BRL	93	80-120			
Vanadium	64.1	0.32	mg/kg dry		34.6	92	80-120			
Zinc	39.4	3.2	mg/kg dry	32.13	7.72	99	80-120			
Batch P5K0150 - 7471B										
Blank (P5K0150-BLK1)				Prepared	& Analyz	ed: 11/09/	15			
Mercury	BRL	0.020	mg/kg wei	<u> </u>						

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5K0150 - 7471B	·····									
LCS (P5K0150-BS1)				Prepared	& Analyze	d: 11/09/1	5			
Mercury	0.424	0.020	mg/kg wet	0.4167		102	80-120			
Matrix Spike (P5K0150-MS1)	Sour	rce: 511012	8-03	Prepared	& Analyze	d: 11/09/1	5			
Mercury	0.562	0.024	mg/kg dry	0.4942	0.0841	97	80-120			
Matrix Spike Dup (P5K0150-MSD1)	Soui	rce: 511012	8-03	Prepared	& Analyze	d: 11/09/1	5			
Mercury	0.627	0.026	mg/kg dry	0.5445	0.0841	100	80-120	11	20	

Project: Kesler Mill (Brownfield)

Prism Work Order: 5110128

Time Submitted: 11/5/2015 4:40:00PM

Attn: Christine Schaefer 7606 Whitehall Executive Center Drive, Suite Charlotte, NC 28273

General Chemistry Parameters - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5K0169 - Solids, Dry Weight						-				
Blank (P5K0169-BLK1)				Prepared	& Analyze	d: 11/09/1	5			
% Solids	100	0.100	% by Weig	ht						
Duplicate (P5K0169-DUP1)	Şo	urce: 5110128	3-03	Prepared	& Analyze	d: 11/09/1	5			
% Solids	78.5	0.100	% by Wei	ght	77.8			0.9	20	
Duplicate (P5K0169-DUP3)	So	urce: 5110128	3-01	Prepared	& Analyze	d: 11/09/1	5			
% Solids	73.3	0.100	% by Wei	ght	72.0			2	20	

Sample Extraction Data

Lab Number	Batch	Initial	Final	Date/Time	
5110128-01	P5K0162	5.41 g	5 mL	11/09/15 14:03	**************************************
5110128-02	P5K0162	5.06 g	5 mL	11/09/15 14:03	
		5			
Prep Method: Solids,	Dry Weight				
Lab Number	Batch	Initial	Final	Date/Time	
5110128-01	P5K0169	30 g	30 g	11/09/15 14:45	
5110128-02	P5K0169	30 g	30 g	11/09/15 14:45	
5110128-03	P5K0169	30 g	30 g	11/09/15 14:45	
5110128-04	P5K0169	30 g	30 g	11/09/15 14:45	
5110128-05	P5K0169	30 g	30 g	11/09/15 14:45	
5110128-06	P5K0169	30 g	30 g	11/09/15 14:45	
5110128-07	P5K0169	30 g	30 g	11/09/15 14:45	
5110128-08	P5K0169	30 g	30 g	11/09/15 14:45	
Prep Method: 3546					
Lab Number	Batch	Initial	Final	Date/Time	
5110128-03	P5K0247	10.01 g	10 mL	11/12/15 8:00	
5110128-04	P5K0247	30.01 g	10 mL	11/12/15 8:00	
Prep Method: 3546					
Lab Number	Batch	Initial	Final	Date/Time	
5110128-03	P5K0151	30.02 g	1 mL	11/09/15 9:10	
5110128-04	P5K0151	30.05 g	1 mL	11/09/15 9:10	
5110128-05	P5K0151	30.01 g	1 mL	11/09/15 9:10	
5110128-05	P5K0151	30.01 g	1 mL	11/09/15 9:10	
5110128-06	P5K0151	30.04 g	1 mL	11/09/15 9:10	
5110128-07	P5K0151	30.04 g	1 mL	11/09/15 9:10	
5110128-08	P5K0151	30.05 g	1 mL	11/09/15 9:10	
Dran Mathadi 2050B					
Prep Method: 3050B	Batch	Initial	Final	Date/Time	
	*************************************		Final		
5110128-03	P5K0149	1.96 g	50 mL	11/09/15 8:05	
5110128-03	P5K0149	1.96 g	50 mL	11/09/15 8:05	
5110128-04	P5K0149	2.04 g	50 mL	11/09/15 8:05	
5110128-04	P5K0149	2.04 g	50 mL	11/09/15 8:05	
Prep Method: 7471B					
_ab Number	Batch	Initial	Final	Date/Time	
5110128-03	P5K0150	0.64 g	50 mL	11/09/15 8:45	
5110128-04	P5K0150	0.65 g	50 mL	11/09/15 8:45	
Prep Method: 5035					
ab Number	Batch	Initial	Final	Date/Time	
5110128-01	P5K0076	5.97 g	5 mL	11/06/15 12:19	
5110128-02	P5K0076	6.64 g	5 mL	11/06/15 12:19	
5110128-03	P5K0076	5.96 g	5 mL	11/06/15 12:19	
5110128-04	P5K0076	5.98 g	5 mL	11/06/15 12:19	
5110128-05	P5K0076	6.59 g	5 mL	11/06/15 12:19	
110128-06	P5K0076	6.83 g	5 mL	11/06/15 12:19	
		=		11/06/15 12:19	
5110128-07	P5K0076	6.66 g	5 mL	11/00/13 12.19	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

	DIVI	En	vironmental S	olutions	PAGE_1_OF	_ <u>l</u> QU(OTE # TO ENS	URE PROPER BILI	LING:			- 82	mnlee IN	TACT OF	on arrival?		
	ATORIES, INC.	•			Project Name	. K	ossier 1	Mari				W43.347.G	ceived O			` \\$	
449 Springh	rook Road	۱ • Char	lotte, NC 28217		Short Hold A				Project:	(Yes)	(NO)			4.00	VATIVES indicated	?	4
	· / / /		704/525-0409					cific reporting (-			Re	ceived V	/ITHIN H	OLDING TIMES?	X	
Client Company Name			no		provisions ar				\$,	CL	ISTODY	SEALS I	NTACT?	- <u>- 4</u> _	
Report To/Contact Na					Invoice To:	Aman	su Rose	e Cord	no			VC	LATILES	3 rec'd W	I/OUT HEADSPAC	E?	<i>_</i> }L
Reporting Address:				<u>ecutive</u>	Address:								100	151	ERS used?	6 Dec -	—- Later 1
Center Dr. CV				! 5								TE	MP. The	rm ID	CRT-0 Obse	rved: J. 1 °C /	Corr: L. C°C
Phone: 704 539 38					Purchase Ord	ler No./	Billing Refer	ence				TO BE	FILLE	D IN B	Y CLIENT/SAI	MPLING PEF	SONNEL
Email Address:	tive Sc	hace	4 e Cendi		•		-	ys □3 Days □4	Davs 🗆	15 Davs	:				ACDoD_		NC X
EDD Type: PDF X E		Other_			"Working Days			andard 10 days 🚨			3e	Certin	Jauvii.				
Site Location Name: _					Samples receive	ed after 14	1:00 will be pro-	cessed next busine	ess day.		- 1		.	SC_			
Site Location Physical	l Address	s: <u>Sal</u>	lisbury 1	<u>いこ</u>				ays, excluding wee			t				YESNO_		
·			· · · · · · · · · · · · · · · · · · ·		RENDERE	D BY PRIS	M LABORATORI	ES, INC. TO CLIENT				Sample	e Iced	Upon (Collection: YE	:s_X_No	
			TIME	MATRIX	SAMPI	E CONT	AINER				ANAL'	YSIS REC	UESTE	<u>2</u>	,		PRISM
CLIENT	DATE		COLLECTED	(SOIL,			T	PRESERVA-	1	0 / Z	not	ל למע	C /s	5 Q/	REMA	ARKS	LAB
SAMPLE DESCRIPTION	COLLEC	IED	MILITARY HOURS	WATER OR SLUDGE)	*TYPE SEE BELOW	NO.	SIZE	TIVES	108	5°/28	27.7	120/1	130	3			ID NO.
				-	VOA		your	Hei		7 / 0	(Y -		7	f		+
[GW-1(0-1)	11/4/	15	930	501	Catalian	5	402	Meluna	X	X							01
GW-1(2-4)	ululi	15	940	Soil	Chief.	5	yoz	Nettense 1-te-1	X	X							62
GW-4 (0-1)	14/	15	1045	Soil	your frien	7	402	1/2/	X		X	X	X				03
GW-4 (5-7)	11/4/	15	1055	Soil	ANTE SUL	7	you	Hela	X		X	X	X				04
Gw-3 (0-17	174)	15	1145	40:1	Charles	5	Vok	Hel	X		X						os
Gw-3 (4-6)	11/4/	15	1155	Se.1	Les Land	_5	Us As	Method	X		X						06
Ow- 970-17	18141	15	1350	Serie	year year	5	yon	HET	X		X						01
6 2 3	1,1	, ,		. ~	Uer	5	Ugn	method			$\overrightarrow{}$	1					08
1000-9 (4-6)	16/4/	15	1400	Sou	Chen	<u> </u>	Chr	HCI	X		X						- 08
												-					
<u> </u>	9	$\frac{1}{2}$						<u> </u>				<u> </u>			PRESS DOV	VN EIRMI V	3 CORIES
Sampler's Signature	Frem 1	Sugar	<u>. </u>	Sampled By	(Print Name)	_54	24 Tay	n	Affiliati	ion <u> </u>	ard	no			PRESS DOV	A THE WILL	. 3 COFFES
Upon relinquishing, this	Chain of C	Custod	ly is your auth	orization for	Prism to proce	ed with t	the analyses	as requested ab	ove. An	y chang	es mus	st be				PRISM	USE ONLY
submitted in writing to the	he Prism P	roject	Manager. The		ved By (Signature)		after analyse	s have been initi	alized.	Date		Military/Ho	1 Total			DATE WAS ARREST	
Relinquished By: (Signature)	مراسط	/ /		Necei	ved by Signature)	41	de			11 5.	Sic	1/11	,	Addition	al Comments:	Site Arrival Ti	me:
Relinquished By: (Signature)	JU/1/			Recei	ved By: (Signature)	-TT	-ref	\sim		Date	70	16-1-	2			Site Departur	e Time:
a con			~				1.2		1				_			Field Tech Fe	
Relinquished By: (Signature)	-	11	W	Recei	ved For Prism Labo	ratories By	1			Date	70	11:6	$\overline{}$			win in the below with the second	
Method of Shipment: NOTE/AL	L SAMPLE C	COOLER	S SHOULD BE TA	PED SHUT WITH	VENTODY SEAL	S FOR TRA	NSPORTATION	TO THE LABORATO	RY.	COC Gro	up No.	16-4	- -			Mileage:	
SAMPLE	S ARE NOT A	ACEPT	ED AND VERIFIED	AGAINST COC	UNTIL RECEIVED	AT THE LA	ABORATORY.		ļ	Cilo	(1) c						
☐ Fed Ex ☐ UPS ☐ Hand-d				Other							178					ore se	VEDER FOR
NPDES: UST:				INKING WAT		WASTE				ANDFIL			00				VERSE FOR CONDITIONS
	,	cos		NC DSC		□ SC	O NC C	3				J NC 🗖	SC				
*CONTAINER TYPE CO	D DES: A=	= Amb	er C = Clear	G= Glass F	P = Plastic: TL	= Teflon	D -Lined Cap	VOA = Volatile C	l □ Droanics		l [s (Zero		pace)				
	• •			· 1							,		,,				

CHAIN OF CUSTODY RECORD

LAB USE ONLY

NC Certification No. 402 SC Certification No. 99012 NC Drinking Water Cert No. 37735 VA Certification No. 460211 DoD ELAP: L-A-B Accredited Certificate No. L2307

12/17/2015

Case Narrative

ATC Group Services, LLC Christine Schaefer 7606 Whitehall Executive Center Drive, Suite 800 Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

ISO/IEC 17025: L-A-B Accredited Certificate No. L2307

Lab Submittal Date: 11/06/2015 Prism Work Order: 5110135

This data package contains the analytical results for the project identified above and includes a Case Narrative, Sample Results and Chain of Custody. Unless otherwise noted, all samples were received in acceptable condition and processed according to the referenced methods.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative.

Please call if you have any questions relating to this analytical report.

Respectfully,

PRISM LABORATORIES, INC.

Angela D. Overcash

VP Laboratory Services

Reviewed By Angela D. Overcash

VP Laboratory Services

Data Qualifiers Key Reference:

CCV CCV result is above the control limits. Analyte not detected in the sample. No further action taken.

D RPD value outside of the control limits.

Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

Parameter reported with possible low bias. LCS recovery below the QC limit.

L1 LCS recovery outside of the QC limits. LCSD recovery within the limits. No further action taken.

L2 LCSD recovery outside of the QC limits. LCS recovery within the limits. No further action taken.

М Matrix spike outside of the control limits.

MSD MS/MSD RPD Value outside of the control limits.

BRL Below Reporting Limit MDL Method Detection Limit RPD Relative Percent Difference

Results reported to the reporting limit. All other results are reported to the MDL with values between MDL and

reporting limit indicated with a J.

Sample Receipt Summary

12/17/2015

Prism Work Order: 5110135

Client Sample ID	Lab Sample ID	Matrix	Date Sampled	Date Received
GW-2 (0-1)	5110135-01	Solid	11/04/15	11/06/15
GW-2 (2-4)	5110135-02	Solid	11/05/15	11/06/15
GW-5 (0-1)	5110135-03	Solid	11/05/15	11/06/15
GW-6 (0-1)	5110135-04	Solid	11/05/15	11/06/15
GW-6 (2-4)	5110135-05	Solid	11/05/15	11/06/15
GW-7 (0-1)	5110135-06	Solid	11/05/15	11/06/15
GW-7 (2-4)	5110135-07	Solid	11/05/15	11/06/15
GW-8 (0-1)	5110135-08	Solid	11/05/15	11/06/15
GW-8 (4-6)	5110135-09	Solid	11/05/15	11/06/15
GW-10 (0-1)	5110135-10	Solid	11/04/15	11/06/15
GW-10 (6-8)	5110135-11	Solid	11/04/15	11/06/15
GW-12 (0-1)	5110135-12	Solid	11/04/15	11/06/15
GW-12 (4-6)	5110135-13	Solid	11/04/15	11/06/15

Samples were received in good condition at 3.5 degrees C unless otherwise noted.

12/17/2015

Prism ID	Client ID	Parameter	Method	Result		Units
5110135-01	GW-2 (0-1)	1-Methylnaphthalene	8270D	0.20	J	mg/kg dry
5110135-01	GW-2 (0-1)	2-Methylnaphthalene	8270D	0.25	J	mg/kg dry
5110135-01	GW-2 (0-1)	Acenaphthene	8270D	0.70		mg/kg dry
5110135-01	GW-2 (0-1)	Acenaphthylene	8270D	0.17	j	mg/kg dry
5110135-01	GW-2 (0-1)	Anthracene	8270D	1.8		mg/kg dry
5110135-01	GW-2 (0-1)	Benzo(a)anthracene	8270D	4.6		mg/kg dry
5110135-01	GW-2 (0-1)	Benzo(a)pyrene	8270D	4.1		mg/kg dry
5110135-01	GW-2 (0-1)	Benzo(b)fluoranthene	8270D	5.2		mg/kg dry
5110135-01	GW-2 (0-1)	Benzo(g,h,i)perylene	8270D	2.4		mg/kg dry
5110135-01	GW-2 (0-1)	Benzo(k)fluoranthene	8270D	1.8		mg/kg dry
5110135-01	GW-2 (0-1)	Chrysene	8270D	4.3		mg/kg dry
5110135-01	GW-2 (0-1)	Dibenzo(a,h)anthracene	8270D	0.59		mg/kg dry
5110135-01	GW-2 (0-1)	Dibenzofuran	8270D	0.36	j	mg/kg dry
5110135-01	GW-2 (0-1)	Fluoranthene	8270D	7.2		mg/kg dry
5110135-01	GW-2 (0-1)	Fluorene	8270D	0.61		mg/kg dry
5110135-01	GW-2 (0-1)	Indeno(1,2,3-cd)pyrene	8270D	2.5		mg/kg dry
5110135-01	GW-2 (0-1)	Naphthalene	8270D	0.33	J	mg/kg dry
5110135-01	GW-2 (0-1)	Phenanthrene	8270D	5.2		mg/kg dry
5110135-01	GW-2 (0-1)	Pyrene	8270D	6.6		mg/kg dry
5110135-01	GW-2 (0-1)	Acetone	8260B	0.052		mg/kg dry
5110135-01	GW-2 (0-1)	Naphthalene	8260B	0.027		mg/kg dry
5110135-01	GW-2 (0-1)	Trichlorofluoromethane	8260B	0.0020	J	mg/kg dry
5110135-02	GW-2 (2-4)	Benzo(a)anthracene	8270D	0.18	J	mg/kg dry
5110135-02	GW-2 (2-4)	Benzo(a)pyrene	8270D	0.15	J	mg/kg dry
5110135-02	GW-2 (2-4)	Benzo(b)fluoranthene	8270D	0.26	J	mg/kg dry
5110135-02	GW-2 (2-4)	Chrysene	8270D	0.16	J	mg/kg dry
5110135-02	GW-2 (2-4)	Fluoranthene	8270D	0.37	J	mg/kg dry
5110135-02	GW-2 (2-4)	Phenanthrene	8270D	0.25	J	mg/kg dry
5110135-02	GW-2 (2-4)	Pyrene	8270D	0.29	J	mg/kg dry
5110135-03	GW-5 (0-1)	Diesel Range Organics	*8015C	73		mg/kg dry
5110135-03	GW-5 (0-1)	Anthracene	8270D	0.17	J	mg/kg dry
5110135-03	GW-5 (0-1)	Benzo(a)anthracene	8270D	0.66		mg/kg dry
5110135-03	GW-5 (0-1)	Benzo(a)pyrene	8270D	0.66		mg/kg dry
5110135-03	GW-5 (0-1)	Benzo(b)fluoranthene	8270D	0.87		mg/kg dry
5110135-03	GW-5 (0-1)	Benzo(g,h,i)perylene	8270D	0.43		mg/kg dry
5110135-03	GW-5 (0-1)	Benzo(k)fluoranthene	8270D	0.44		mg/kg dry
5110135-03	GW-5 (0-1)	Chrysene	8270D	0.76		mg/kg dry
5110135-03	GW-5 (0-1)	Dibenzo(a,h)anthracene	8270D	0.11	J	mg/kg dry
5110135-03	GW-5 (0-1)	Fluoranthene	8270D	1.3		mg/kg dry
5110135-03	GW-5 (0-1)	Indeno(1,2,3-cd)pyrene	8270D	0.43		mg/kg dry
5110135-03	GW-5 (0-1)	Phenanthrene	8270D	0.62		mg/kg dry
5110135-03	GW-5 (0-1)	Pyrene	8270D	1.2		mg/kg dry
5110135-04	GW-6 (0-1)	Anthracene	8270D	0.31	J	mg/kg dry
5110135-04	GW-6 (0-1)	Benzo(a)anthracene	8270D	0.98		mg/kg dry

12/17/2015

Prism ID	Client ID	Parameter	Method	Result		Units
5110135-04	GW-6 (0-1)	Benzo(a)pyrene	8270D	0.77		mg/kg dry
5110135-04	GW-6 (0-1)	Benzo(b)fluoranthene	8270D	1.0		mg/kg dry
5110135-04	GW-6 (0-1)	Benzo(g,h,i)perylene	8270D	0.48		mg/kg dry
5110135-04	GW-6 (0-1)	Benzo(k)fluoranthene	8270D	0.36	j	mg/kg dry
5110135-04	GW-6 (0-1)	Chrysene	8270D	0.85		mg/kg dry
5110135-04	GW-6 (0-1)	Dibenzo(a,h)anthracene	8270D	0.13	J	mg/kg dry
5110135-04	GW-6 (0-1)	Fluoranthene	8270D	1.8		mg/kg dry
5110135-04	GW-6 (0-1)	Indeno(1,2,3-cd)pyrene	8270D	0.49		mg/kg dry
5110135-04	GW-6 (0-1)	Phenanthrene	8270D	1.3		mg/kg dry
5110135-04	GW-6 (0-1)	Pyrene	8270D	1.6		mg/kg dry
5110135-04	GW-6 (0-1)	Acetone	8260B	0.27		mg/kg dry
5110135-05	GW-6 (2-4)	1-Methylnaphthalene	8270D	0.11	J	mg/kg dry
5110135-05	GW-6 (2-4)	2-Methylnaphthalene	8270D	0.14	J	mg/kg dry
5110135-05	GW-6 (2-4)	Acenaphthene	8270D	0.19	J	mg/kg dry
5110135-05	GW-6 (2-4)	Anthracene	8270D	0.61		mg/kg dry
5110135-05	GW-6 (2-4)	Benzo(a)anthracene	8270D	1.1		mg/kg dry
5110135-05	GW-6 (2-4)	Benżo(a)pyrene	8270D	0.85		mg/kg dry
5110135-05	GW-6 (2-4)	Benzo(b)fluoranthene	8270D	1.1		mg/kg dry
5110135-05	GW-6 (2-4)	Benzo(g,h,i)perylene	8270D	0.46		mg/kg dry
5110135-05	GW-6 (2-4)	Benzo(k)fluoranthene	8270D	0.43		mg/kg dry
5110135-05	GW-6 (2-4)	Chrysene	8270D	1.0		mg/kg dry
5110135-05	GW-6 (2-4)	Dibenzo(a,h)anthracene	8270D	0.13	J	mg/kg dry
5110135-05	GW-6 (2-4)	Dibenzofuran	8270D	0.18	J	mg/kg dry
5110135-05	GW-6 (2-4)	Fluoranthene	8270D	2.2	•	mg/kg dry
5110135-05	GW-6 (2-4)	Fluorene	8270D	0.22	J	mg/kg dry
5110135-05	GW-6 (2-4)	Indeno(1,2,3-cd)pyrene	8270D	0.48	•	mg/kg dr
5110135-05	GW-6 (2-4)	Naphthalene	8270D	0.15	J	mg/kg dr
5110135-05	GW-6 (2-4)	Phenanthrene	8270D	2.1	•	mg/kg dr
5110135-05	GW-6 (2-4)	Pyrene	8270D	1.8		mg/kg dr
5110135-05	GW-6 (2-4)	Acetone	8260B	0.079		mg/kg dr
5110135-05	GW-7 (0-1)	Aluminum	*6010C	38000		mg/kg dr
5110135-06	` '		*7471B	0.057		mg/kg dr
5110135-06	GW-7 (0-1)	Mercury	*6010C	9.4		mg/kg dr
	GW-7 (0-1)	Antimony				mg/kg dr
5110135-06	GW-7 (0-1)	Arsenic	*6010C	29		
5110135-06	GW-7 (0-1)	Barium	*6010C	96		mg/kg dr
5110135-06	GW-7 (0-1)	Beryllium	*6010C	31		mg/kg dr
5110135-06	GW-7 (0-1)	Cadmium	*6010C	27		mg/kg dr
5110135-06	GW-7 (0-1)	Calcium	*6010C	930		mg/kg di
5110135-06	GW-7 (0-1)	Chromium	*6010C	55		mg/kg di
5110135-06	GW-7 (0-1)	Cobalt	*6010C	58		mg/kg dr
5110135-06	GW-7 (0-1)	Copper	*6010C	85		mg/kg di
5110135-06	GW-7 (0-1)	Iron	*6010C	54000		mg/kg di
5110135-06	GW-7 (0-1)	Lead	*6010C	37		mg/kg di
5110135-06	GW-7 (0-1)	Magnesium	*6010C	1300		mg/kg di
5110135-06	GW-7 (0-1)	Manganese	*6010C	500		mg/kg dr

12/17/2015

Prism ID	Client ID	Parameter	Method	Result	Units
5110135-06	GW-7 (0-1)	Nickel	*6010C	42	mg/kg dry
5110135-06	GW-7 (0-1)	Potassium	*6010C	1700	mg/kg dry
5110135-06	GW-7 (0-1)	Selenium	*6010C	21	mg/kg dry
5110135-06	GW-7 (0-1)	Silver	*6010C	11	mg/kg dry
5110135-06	GW-7 (0-1)	Sodium	*6010C	670	mg/kg dry
5110135-06	GW-7 (0-1)	Thallium	*6010C	25	mg/kg dry
5110135-06	GW-7 (0-1)	Vanadium	*6010C	150	mg/kg dry
5110135-06	GW-7 (0-1)	Zinc	*6010C	91	mg/kg dry
5110135-07	GW-7 (2-4)	1-Methylnaphthalene	8270D	0.11 J	mg/kg dry
5110135-07	GW-7 (2-4)	2-Methylnaphthalene	8270D	0.15 J	mg/kg dry
5110135-07	GW-7 (2-4)	Fluoranthene	8270D	0.12 J	mg/kg dry
5110135-07	GW-7 (2-4)	Phenanthrene	8270D	0.15 J	mg/kg dry
5110135-07	GW-7 (2-4)	Pyrene	8270D	0.12 J	mg/kg dry
5110135-07	GW-7 (2-4)	Aluminum	*6010C	41000	mg/kg dry
5110135-07	GW-7 (2-4)	Mercury	*7471B	0.066	mg/kg dry
5110135-07	GW-7 (2-4)	Antimony	*6010C	9.9	mg/kg dry
5110135-07	GW-7 (2-4)	Arsenic	*6010C	28	mg/kg dry
5110135-07	GW-7 (2-4)	Barium	*6010C	78	mg/kg dry
5110135-07	GW-7 (2-4)	Beryllium	*6010C	31	mg/kg dry
5110135-07	GW-7 (2-4)	Cadmium	*6010C	27	mg/kg dry
5110135-07	GW-7 (2-4)	Calcium	*6010C	630	mg/kg dry
5110135-07	GW-7 (2-4)	Chromium	*6010C	57	mg/kg dry
5110135-07	GW-7 (2-4)	Cobalt	*6010C	78	mg/kg dry
5110135-07	GW-7 (2-4)	Copper	*6010C	90	mg/kg dry
5110135-07	GW-7 (2-4)	Iron	*6010C	53000	mg/kg dry
5110135-07	GW-7 (2-4)	Lead	*6010C	38	mg/kg dry
5110135-07	GW-7 (2-4)	Magnesium	*6010C	1600	mg/kg dry
5110135-07	GW-7 (2-4)	Manganese	*6010C	480	mg/kg dry
5110135-07	GW-7 (2-4)	Nickel	*6010C	40	mg/kg dry
5110135-07	GW-7 (2-4)	Potassium	*6010C	1400	mg/kg dry
5110135-07	GW-7 (2-4)	Selenium	*6010C	22	mg/kg dry
5110135-07	GW-7 (2-4)	Silver	*6010C	11	mg/kg dry
5110135-07	GW-7 (2-4)	Sodium	*6010C	670	mg/kg dry
5110135-07	GW-7 (2-4)	Thallium	*6010C	25	mg/kg dry
5110135-07	GW-7 (2-4)	Vanadium	*6010C	160	mg/kg dry
5110135-07	GW-7 (2-4)	Zinc	*6010C	91	mg/kg dry
5110135-08	GW-8 (0-1)	Diesel Range Organics	*8015C	63	mg/kg dry
5110135-08	GW-8 (0-1)	1-Methylnaphthalene	8270D	0,48	mg/kg dry
5110135-08	GW-8 (0-1)	2-Methylnaphthalene	8270D	0.63	mg/kg dry
5110135-08	GW-8 (0-1)	Benzo(a)anthracene	8270D	0,22 J	mg/kg dry
5110135-08	GW-8 (0-1)	Benzo(a)pyrene	8270D	0.17 J	mg/kg dry
5110135-08	GW-8 (0-1)	Benzo(b)fluoranthene	8270D	0,29 J	mg/kg dry
5110135-08	GW-8 (0-1)	Benzo(k)fluoranthene	8270D	0.11 J	mg/kg dry
5110135-06	GW-8 (0-1)	Benzoic Acid	8270D	0.30 J	mg/kg dry
			8270D	0,25 J	mg/kg dry
5110135-08	GW-8 (0-1)	Chrysene	02/00	5,25	

12/17/2015

Prism ID	Client ID	Parameter	Method	Result		Units
5110135-08	GW-8 (0-1)	Dibenzofuran	8270D	0.17	J	mg/kg dry
5110135-08	GW-8 (0-1)	Fluoranthene	8270D	0.36	j	mg/kg dry
5110135-08	GW-8 (0-1)	Naphthalene	8270D	0.47		mg/kg dry
5110135-08	GW-8 (0-1)	Phenanthrene	8270D	0.52		mg/kg dry
5110135-08	GW-8 (0-1)	Pyrene	8270D	0.33	J	mg/kg dry
5110135-10	GW-10 (0-1)	Benzo(a)anthracene	8270D	0.22	J	mg/kg dry
5110135-10	GW-10 (0-1)	Benzo(a)pyrene	8270D	0.18	J	mg/kg dry
5110135-10	GW-10 (0-1)	Benzo(b)fluoranthene	8270D	0.26	J	mg/kg dry
5110135-10	GW-10 (0-1)	Benzo(g,h,i)perylene	8270D	0.11	J	mg/kg dry
5110135-10	GW-10 (0-1)	Benzo(k)fluoranthene	8270D	0.12	J	mg/kg dry
5110135-10	GW-10 (0-1)	Benzoic Acid	8270D	0.18	J	mg/kg dry
5110135-10	GW-10 (0-1)	Chrysene	8270D	0.19	J	mg/kg dry
5110135-10	GW-10 (0-1)	Fluoranthene	8270D	0.39	J	mg/kg dry
5110135-10	GW-10 (0-1)	Indeno(1,2,3-cd)pyrene	8270D	0.12	J	mg/kg dry
5110135-10	GW-10 (0-1)	Phenanthrene	8270D	0.25	J	mg/kg dry
5110135-10	GW-10 (0-1)	Pyrene	8270D	0.33	J	mg/kg dry
5110135-10	GW-10 (0-1)	Acetone	8260B	0.13		mg/kg dry
5110135-12	GW-12 (0-1)	Acetone	8260B	0.093		mg/kg dry
5110135-13	GW-12 (4-6)	Benzo(b)fluoranthene	8270D	0.13	J	mg/kg dry
5110135-13	GW-12 (4-6)	Fluoranthene	8270D	0.24	J	mg/kg dry
5110135-13	GW-12 (4-6)	Phenanthrene	8270D	0.20	J	mg/kg dry
5110135-13	GW-12 (4-6)	Pyrene	8270D	0.19	J	mg/kg dry

ATC Group Services, LLC

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-2 (0-1)

Prism Sample ID: 5110135-01 Prism Work Order: 5110135 Time Collected: 11/04/15 14:45

Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parameters									
% Solids	78.1	% by Weight	0.100	0.100	1	*SM2540 G	11/9/15 14:45	ARC	P5K0169
Semivolatile Organic Compound	ds by GC/MS	•							
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.42	0.066	1	8270D	11/10/15 17:2	7 JMV	P5K0151
1,2-Dichlorobenzene	BRL	mg/kg dry	0.42	0.064	1	8270D	11/10/15 17:2	7 JMV	P5K0151
1,3-Dichlorobenzene	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 17:2	7 JMV	P5K0151
1,4-Dichlorobenzene	BRL	mg/kg dry	0.42	0.062	1	8270D	11/10/15 17:2	7 JM∨	P5K0151
1-Methylnaphthalene	0.20 J	mg/kg dry	0.42	0.081	1	8270D	11/10/15 17:2	7 JMV	P5K0151
2,4,6-Trichlorophenol	BRL	mg/kg dry	0.42	0.079	1	8270D	11/10/15 17:2	7 JMV	P5K0151
2,4-Dichlorophenol	BRL	mg/kg dry	0.42	0.082	1	8270D	11/10/15 17:2	7 JMV	P5K0151
2,4-Dimethylphenol	BRL	mg/kg dry	0.42	0.065	1	8270D	11/10/15 17:2	7 JMV	P5K0151
2,4-Dinitrophenol	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 17:2	7 JMV	P5K0151
2,4-Dinitrotoluene	BRL	mg/kg dry	0.42	0.051	1	8270D	11/10/15 17:2	7 JMV	P5K0151
2,6-Dinitrotoluene	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 17:2	7 JMV	P5K0151
2-Chloronaphthalene	BRL	mg/kg dry	0.42	0.061	1	8270D	11/10/15 17:2	7 JMV	P5K0151
2-Chlorophenol	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 17:2	7 JMV	P5K0151
2-Methylnaphthalene	0.25 J	mg/kg dry	0.42	0.067	1	8270D	11/10/15 17:2	7 JMV	P5K0151
2-Methylphenol	BRL	mg/kg dry	0.42	0.054	1	8270D	11/10/15 17:2	7 JMV	P5K0151
2-Nitrophenol	BRL	mg/kg dry	0.42	0.077	1	8270D	11/10/15 17:2	7 JMV	P5K0151
3,3'-Dichlorobenzidine	BRL	mg/kg dry	0.42	0.083	1	8270D	11/10/15 17:2	7 JMV	P5K0151
3/4-Methylphenol	BRL	mg/kg dry	0.42	0.052	1	8270D	11/10/15 17:2	7 JMV	P5K0151
4,6-Dinitro-2-methylphenol	BRL	mg/kg dry	0.42	0.063	1	8270D	11/10/15 17:2	7 JM∨	P5K0151
4-Bromophenyl phenyl ether	BRL	mg/kg dry	0.42	0.072	1	8270D	11/10/15 17:2	7 JMV	P5K0151
4-Chloro-3-methylphenol	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 17:2	7 JMV	P5K0151
4-Chloroaniline	BRL	mg/kg dry	0.42	0.051	1	8270D	11/10/15 17:2	7 JMV	P5K0151
4-Chlorophenyl phenyl ether	BRL	mg/kg dry	0.42	0.055	1	8270D	11/10/15 17:2	7 JM∨	P5K0151
4-Nitrophenol	BRL	mg/kg dry	0.42	0.065	1	8270D	11/10/15 17:2	7 JMV	P5K0151
Acenaphthene	0.70	mg/kg dry	0.42	0.057	1	8270D	11/10/15 17:2	7 JMV	P5K0151
Acenaphthylene	0.17 J	mg/kg dry	0.42	0.061	1	8270D	11/10/15 17:2	7 JMV	P5K0151
Anthracene	1.8	mg/kg dry	0.42	0.068	1	8270D	11/10/15 17:2	7 JMV	P5K0151
Azobenzene	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 17:2		P5K0151
Benzo(a)anthracene	4.6	mg/kg dry	0.42	0.055	1	8270D	11/10/15 17:2		P5K0151
• •							11/10/15 17:2		P5K0151
Benzo(a)pyrene	4.1	mg/kg dry	0.42	0.046	1	8270D	11/10/15 17:2		P5K0151
Benzo(b)fluoranthene	5.2	mg/kg dry	0.42	0.049	1	8270D			P5K0151
Benzo(g,h,i)perylene	2.4	mg/kg dry	0.42	0.046	1	8270D	11/10/15 17:23		
Benzo(k)fluoranthene	1.8	mg/kg dry	0.42	0.055	1	8270D	11/10/15 17:23		P5K0151 P5K0151
Benzoic Acid	BRL	mg/kg dry	0.42	0.036	1	8270D	11/10/15 17:2		P5K0151
Benzyl alcohol	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 17:2		
ois(2-Chloroethoxy)methane	BRL	mg/kg dry	0.42	0.073	1	8270D	11/10/15 17:2		P5K0151
Bis(2-Chloroethyl)ether	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 17:2		P5K0151
Bis(2-chloroisopropyl)ether	BRL	mg/kg dry	0.42	0.072	1	8270D	11/10/15 17:2		P5K0151
3is(2-Ethylhexyl)phthalate	BRL	mg/kg dry	0.42	0.063	1	8270D	11/10/15 17:2	7 JMV	P5K0151

Analyst

Analysis

Batch

ATC Group Services, LLC Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

1,1-Dichloropropylene

1,2,3-Trichlorobenzene

1,2,3-Trichloropropane

1,2,4-Trichlorobenzene

Parameter

Project: Kesler Mill (Brownfield)

Linite

Donort

Sample Matrix: Solid

Regult

BRL

BRL

BRL

BRL

Client Sample ID: GW-2 (0-1) Prism Sample ID: 5110135-01 Prism Work Order: 5110135

Prism Work Order: 5110135 Time Collected: 11/04/15 14:45 Time Submitted: 11/06/15 09:50

Method

Dilution

MOL

Chrysane	Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID	
Dibenzo(s,h)anthracene 0.89 mg/kg dry 0.42 0.051 1 82700 11/10/15 17:27 MaV PSK015 Dibenzo(s,h)anthracene 0.36	Butyl benzyl phthalate	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 17:2	7 JMV	P5K0151	
Dibenzofuran 0.36 J mg/kg dry 0.42 0.084 1 8270D 11/10/16 17:27 JMV PSK015	Chrysene	4.3	mg/kg dry	0.42	0.053	1	8270D	11/10/15 17:2	7 JMV	P5K0151	
Diethyl phthalate	Dibenzo(a,h)anthracene	0.59	mg/kg dry	0.42	0.051	1	8270D	11/10/15 17:2	7 J M V	P5K0151	
Diethy Inhibitate BRL mg/kg dry 0.42 0.658 1 82700 11/10/15 1727 JMV PSK015 Dirnettyl phthalate BRL mg/kg dry 0.42 0.656 1 82700 11/10/15 1727 JMV PSK015 Dirnettyl phthalate BRL mg/kg dry 0.42 0.656 1 82700 11/10/15 1727 JMV PSK015 Dirnettyl phthalate BRL mg/kg dry 0.42 0.652 1 82700 11/10/15 1727 JMV PSK015 Dirnettyl phthalate BRL mg/kg dry 0.42 0.654 1 82700 11/10/15 1727 JMV PSK015	Dibenzofuran	0.36 J	mg/kg dry	0.42	0.064	1	8270D	11/10/15 17:2	7 JMV	P5K0151	
Din-buly phthalate	Diethyl phthalate	BRL	mg/kg dry		0.058	1	8270D	11/10/15 17:2	7 J M V	P5K0151	
Dimodify phthalate BRL mg/kg dry 0.42 0.052 1 8270D 11/10/15 17:27 JMV PSK015	Dimethyl phthalate	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 17:2	7 JMV	P5K0151	
Pluoranthene 7.2 mg/kg dry 0.42 0.064 1 8270D 11/10/15 17:27 JMV PSK015	Di-n-butyl phthalate	. BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 17:2	7 JM ∨	P5K0151	
Fluorene 0.61 mg/kg dry 0.42 0.061 1 8270D 11/10/15 17:27 JMV PSK015	Di-n-octyl phthalate	BRL	mg/kg dry	0.42	0.052	1	8270D	11/10/15 17:2	7 JM V	P5K0151	
Hexachlorobenzene BRL mg/kg dry 0.42 0.067 1 8270D 11/10/15 17:27 JMV P5K015 Hexachlorobutadiene BRL mg/kg dry 0.42 0.076 1 8270D 11/10/15 17:27 JMV P5K015 Hexachlorocyclopentadiene BRL mg/kg dry 0.42 0.075 1 8270D 11/10/15 17:27 JMV P5K015 Hexachlorochane BRL mg/kg dry 0.42 0.075 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-ed)pyrene 2.5 mg/kg dry 0.42 0.048 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-ed)pyrene BRL mg/kg dry 0.42 0.057 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-ed)pyrene BRL mg/kg dry 0.42 0.057 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-ed)pyrene BRL mg/kg dry 0.42 0.068 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-ed)pyrene BRL mg/kg dry 0.42 0.068 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-ed)pyrene BRL mg/kg dry 0.42 0.068 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-ed)pyrene BRL mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-ed)pyrene BRL mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-ed)pyrene BRL mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-ed)pyrene BRL mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-ed)pyrene BRL mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-ed)pyrene BRL mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-ed)pyrene BRL mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-ed)pyrene BRL mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-ed)pyrene BRL mg/kg dry 0.042 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-ed)pyrene BRL mg/kg dry 0.042 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-ed)pyrene BRL mg/kg dry 0.042 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-ed)pyrene BRL mg/kg dry 0.0047 0.0023 1 8260B 11/10/15 17:19 MV&CC P5K01 Indeno(1,2,2-ed)pyrene BRL mg/kg dry 0.0047 0.0003 1 8260B 11/10/15 17:19 MV&CC P5K01 Indeno(1,2,2-ed)pyrene BRL mg/kg dry 0.0047 0.0001 1 8260B 11/10/15 17:19 MV&CC P5K01 Indeno(1,2,2-ed)pyrene BRL mg/kg dry 0.0047 0.0001 1 8260B 11/10/15 17:19	Fluoranthene	7.2	mg/kg dry	0.42	0.054	1	8270D	11/10/15 17:2	7 JMV	P5K0151	
Hexachlorobutadiene	Fluorene	0.61	mg/kg dry	0.42	0.061	1	8270D	11/10/15 17:2	7 JMV	P5K0151	
Hexachlorocyclopentadiene BRL mg/kg dry 0.42 0.075 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-cd)pyrene 2.5 mg/kg dry 0.42 0.048 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-cd)pyrene BRL mg/kg dry 0.42 0.048 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-cd)pyrene BRL mg/kg dry 0.42 0.057 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-cd)pyrene BRL mg/kg dry 0.42 0.058 1 8270D 11/10/15 17:27 JMV P5K015 Indeno(1,2,3-cd)pyrene BRL mg/kg dry 0.42 0.058 1 8270D 11/10/15 17:27 JMV P5K015 Indenochane BRL mg/kg dry 0.42 0.058 1 8270D 11/10/15 17:27 JMV P5K015 Indenochane BRL mg/kg dry 0.42 0.056 1 8270D 11/10/15 17:27 JMV P5K015 Indenochane BRL mg/kg dry 0.42 0.056 1 8270D 11/10/15 17:27 JMV P5K015 Indenochane BRL mg/kg dry 0.42 0.056 1 8270D 11/10/15 17:27 JMV P5K015 Indenochane BRL mg/kg dry 0.42 0.056 1 8270D 11/10/15 17:27 JMV P5K015 Indenochane BRL mg/kg dry 0.42 0.056 1 8270D 11/10/15 17:27 JMV P5K015 Indenochane BRL mg/kg dry 0.42 0.056 1 8270D 11/10/15 17:27 JMV P5K015 Indenochane BRL mg/kg dry 0.42 0.056 1 8270D 11/10/15 17:27 JMV P5K015 Indenochane BRL mg/kg dry 0.42 0.056 1 8270D 11/10/15 17:27 JMV P5K015 Indenochane BRL mg/kg dry 0.42 0.056 1 8270D 11/10/15 17:27 JMV P5K015 Indenochane BRL mg/kg dry 0.042 0.056 1 8270D 11/10/15 17:27 JMV P5K015 Indenochane BRL mg/kg dry 0.042 0.056 1 8270D 11/10/15 17:27 JMV P5K015 Indenochane BRL mg/kg dry 0.0047 0.00038 1 8260B 11/9/15 17:19 MV&CC P5K011 Indenochane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MV&CC P5K011 Indenochane BRL mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MV&CC P5K011 Indenochane BRL mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MV&CC P5K011 Indenochane BRL mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MV&CC P5K011 Indenochane BRL mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MV&CC P5K011 Indenochane BRL mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MV&CC P5K011 Indenochane BRL mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MV&CC P5K011 Indenochane BRL mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MV&CC P5K011 Indenochane	Hexachlorobenzene	BRL	mg/kg dry	0.42	0.067	1	8270D	11/10/15 17:2	7 JMV	P5K0151	
Hexachloroethane	Hexachlorobutadiene	BRL	mg/kg dry	0.42	0.076	1	8270D	11/10/15 17:2	7 JMV	P5K015	
Indeno(1,2,3-od)pyrene 2.5 mg/kg dry 0.42 0.048 1 8270D 11/10/15 17:27 JMV P5K015	Hexachlorocyclopentadiene	BRL	mg/kg dry	0.42	0.075	1	8270D	11/10/15 17:2	7 JMV	P5K015	
Sephorone BRL mg/kg dry 0.42 0.057 1 8270D 11/10/15 17:27 JMV P5K015	Hexachloroethane	BRL	mg/kg dry	0.42	0.071	1	8270D	11/10/15 17:2	7 JMV	P5K015	
Naphthalene 0.33 J mg/kg dry 0.42 0.068 1 8270D 11/10/15 17:27 JMV P5K016	Indeno(1,2,3-cd)pyrene	2.5	mg/kg dry	0.42	0.048	1	8270D	11/10/15 17:2	7 JMV	P5K015	
Nitrobenzene BRL mg/kg dry 0.42 0.060 1 8270D 11/10/15 17:27 JMV P5K015 N-Nitroso-di-n-propylamine BRL mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 N-Nitrosodiphenylamine BRL mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 N-Nitrosodiphenylamine BRL mg/kg dry 0.42 0.064 1 8270D 11/10/15 17:27 JMV P5K015 N-Nitrosodiphenylamine BRL mg/kg dry 0.42 0.050 1 8270D 11/10/15 17:27 JMV P5K015 N-Nitrosodiphenylamine BRL mg/kg dry 0.42 0.056 1 8270D 11/10/15 17:27 JMV P5K015 N-Nitrosodiphenyl BRL mg/kg dry 0.42 0.056 1 8270D 11/10/15 17:27 JMV P5K015 N-Nitrosodiphenyl BRL mg/kg dry 0.42 0.056 1 8270D 11/10/15 17:27 JMV P5K015 N-Nitrosodiphenyl BRL mg/kg dry 0.42 0.056 1 8270D 11/10/15 17:27 JMV P5K015 N-Nitrosodiphenyl 66 % 39-732 N-NITROSODIPHENYL 66 % 44-715 N-NItrosodiphenyl 66 % 39-732 N-NITROSODIPHENYL 66 % 39-732 N-NITROS	Isophorone	BRL	mg/kg dry	0.42	0.057	1	8270D	11/10/15 17:2	7 JMV	P5K015	
Nitrobenzene BRL mg/kg dry 0.42 0.060 1 82700 11/10/15 17:27 JMV P5K015 M-Nitroso-di-n-propylamine BRL mg/kg dry 0.42 0.066 1 82700 11/10/15 17:27 JMV P5K015 M-Nitrosodiphenylamine BRL mg/kg dry 0.42 0.066 1 82700 11/10/15 17:27 JMV P5K015 M-Nitrosodiphenylamine BRL mg/kg dry 0.42 0.050 1 82700 11/10/15 17:27 JMV P5K015 M-Nitrosodiphenylamine BRL mg/kg dry 0.42 0.056 1 82700 11/10/15 17:27 JMV P5K015 M-Nitrosodiphenylamine BRL mg/kg dry 0.42 0.056 1 82700 11/10/15 17:27 JMV P5K015 M-Nitrosodiphenyl BRL mg/kg dry 0.42 0.056 1 82700 11/10/15 17:27 JMV P5K015 M-Nitrosodiphenyl BRL mg/kg dry 0.42 0.056 1 82700 11/10/15 17:27 JMV P5K015 M-Nitrosodiphenyl BRL mg/kg dry 0.42 0.056 1 82700 11/10/15 17:27 JMV P5K015 M-Nitrosodiphenyl 66 % 11/10/15 17:27 JMV P5K015 M-Nitrosodiphenyl 66 % 1 82700 11/10/15 17:27 JMV P5K015 M-Nitrosodiphenyl 66 % 39-132 M-Nitrosodiphenyl 66 %	Naphthalene	0.33 J	mg/kg dry	0.42	0.068	1	8270D	11/10/15 17:2	7 JMV	P5K015	
N-Nitrosodiphenylamine BRL mg/kg dry 0.42 0.064 1 8270D 11/10/15 17:27 JMV P5K015 Pentachlorophenol BRL mg/kg dry 0.42 0.050 1 8270D 11/10/15 17:27 JMV P5K015 Phenanthrene 5.2 mg/kg dry 0.42 0.056 1 8270D 11/10/15 17:27 JMV P5K015 Phenanthrene 5.2 mg/kg dry 0.42 0.065 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.42 0.062 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.056 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.0047 0.0068 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.0047 0.0003 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.0003 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.0003 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.0003 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.0003 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.0003 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.0003 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.0003 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.0003 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.0003 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.0003 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.004	Nitrobenzene	BRL	mg/kg dry		0.060	1	8270D	11/10/15 17:2	27 JM∨	P5K015	
Pentachlorophenol BRL mg/kg dry 0.42 0.050 1 8270D 11/10/15 17:27 JMV P5K015 Phenanthrene 5.2 mg/kg dry 0.42 0.055 1 8270D 11/10/15 17:27 JMV P5K015 Phenol BRL mg/kg dry 0.42 0.062 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.42 0.056 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.0067 0.0068 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.0047 0.00038 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MW&CC P5K016 Pyrene 6.6 mg/kg dry 0.0047 0.00031 1 8260B 11/9/15 17:19 MW&CC P5K016	N-Nitroso-di-n-propylamine	BRL	mg/kg dry	0.42	0.066	1	8270D	11/10/15 17:2	7 JMV	P5K015	
Phenanthrene S.2 mg/kg dry 0.42 0.056 1 8270D 11/10/15 17:27 JMV P5K018	N-Nitrosodiphenylamine	BRL	mg/kg dry	0.42	0.064	1	8270D	11/10/15 17:2	27 JM∨	P5K015	
Phenol BRL mg/kg dry 0.42 0.062 1 8270D 11/10/15 17:27 JMV P5K015 Pyrene 6.6 mg/kg dry 0.42 0.066 1 8270D 11/10/15 17:27 JMV P5K015 Surrogate Recovery Control Limits Surrogate Recovery Control Limits	Pentachlorophenol	BRL	mg/kg dry	0.42	0.050	1	8270D	11/10/15 17:2	27 JM∨	P5K015	
Pyrene 6.6 mg/kg dry 0.42 0.056 1 8270D 11/10/15 17:27 JMV P5K018 Surrogate Recovery Control Limits 2,4,6-Tribromophenol 67 % 39-132 2-Fluorobjehenyl 66 % 44-115 2-Fluorobhenol 60 % 35-115 Nitrobenzene-d5 60 % 37-122 Phenol-d5 61 % 34-121 Terphenyl-d14 72 % 54-127 Volatile Organic Compounds by GC/MS 1,1,12-Tetrachloroethane BRL mg/kg dry 0.0047 0.00038 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00023 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 <t< td=""><td>Phenanthrene</td><td>5.2</td><td>mg/kg dry</td><td>0.42</td><td>0.055</td><td>1</td><td>8270D</td><td>11/10/15 17:2</td><td>7 JMV</td><td>P5K015</td></t<>	Phenanthrene	5.2	mg/kg dry	0.42	0.055	1	8270D	11/10/15 17:2	7 JMV	P5K015	
Surrogate Recovery Control Limits	Phenol	BRL	mg/kg dry	0.42	0.062	1	8270D	11/10/15 17:2	27 JMV	P5K015	
2,4,6-Tribromophenol 67 % 39-132	Pyrene	6.6	mg/kg dry	0.42	0.056	1	8270D	11/10/15 17:2	7 JMV	P5K015	
2-Fluorobiphenyl 66 % 44-115 2-Fluorophenol 60 % 35-115 Nitrobenzene-d5 60 % 37-122 Phenol-d5 61 % 34-121 Terphenyl-d14 72 % 54-127 Volatile Organic Compounds by GC/MS 1,1,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00038 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00041 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00041 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL				Surrogate			Reco	very	Control	Limits	
2-Fluorophenol 60 % 35-115 Nitrobenzene-d5 60 % 37-122 Phenol-d5 61 % 34-121 Terphenyl-d14 72 % 54-127 Volatile Organic Compounds by GC/MS 1,1,1,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00038 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00041 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00041 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260		•		2.4.6-Tribromophenol							
Nitrobenzene-d5 60 % 37-122 Phenol-d5 61 % 34-121 Terphenyl-d14 72 % 54-127 Volatile Organic Compounds by GC/MS 1,1,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00038 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00041 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00041 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K016 1,1,2-Trichloroethane BRL mg/kg dr											
Phenol-d5 61 % 34-121 Terphenyl-d14 72 % 54-127 Volatile Organic Compounds by GC/MS 1,1,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00038 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00041 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00041 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/k				2-Fluoroph	enol		6	0 %	35-115	i	
Volatile Organic Compounds by GC/MS 1,1,1,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00038 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1,1-Trichloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1,2,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00041 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00041 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C			Nitrobenzene-d5				60 %		37-122		
Volatile Organic Compounds by GC/MS 1,1,1,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00038 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1,1-Trichloroethane BRL mg/kg dry 0.0047 0.00023 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1,2,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00041 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&CC P5K010				Phenol-d5			6	61 %		34-121	
1,1,1,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00038 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1,1-Trichloroethane BRL mg/kg dry 0.0047 0.00023 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00041 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00041 1 8260B 11/9/15 17:19 MW&CC P5K010				Terphenyl-	114		7	2 %	54-127	•	
1,1,1,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00038 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1,1-Trichloroethane BRL mg/kg dry 0.0047 0.00023 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00041 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00041 1 8260B 11/9/15 17:19 MW&CC P5K010	Volatile Organic Compounds I	by GC/MS									
1,1,1-Trichloroethane BRL mg/kg dry 0.0047 0.00023 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1,2,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00041 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&CC P5K010			mg/kg dry	0.0047	0.00038	8 1	8260B	11/9/15 17:1	9 MW8	C(P5K016	
1,1,2,2-Tetrachloroethane BRL mg/kg dry 0.0047 0.00032 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00041 1 8260B 11/9/15 17:19 MW&CC P5K010 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&CC P5K010	1,1,1-Trichloroethane	BRL					8260B	11/9/15 17:1	9 MW8	C(P5K016	
1,1,2-Trichloroethane BRL mg/kg dry 0.0047 0.00041 1 8260B 11/9/15 17:19 MW&C(P5K010 N) 1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010 N)										C(P5K016	
1,1-Dichloroethane BRL mg/kg dry 0.0047 0.00013 1 8260B 11/9/15 17:19 MW&C(P5K010	1,1,2-Trichloroethane	BRL					8260B	11/9/15 17:1	9 MW8	C(P5K016	
DEVO	1,1-Dichloroethane	BRL					8260B	11/9/15 17:1	9 MW8	C(P5K01	
	1,1-Dichloroethylene		mg/kg dry	0.0047		-	8260B	11/9/15 17:1	9 MW8	C(P5K016	

0.0047

0.0047

0.0047

0.0047

mg/kg dry

mg/kg dry

mg/kg dry

mg/kg dry

0.00026

0.00027

0.00060

0.00035

1

MW&C(P5K0168

MW&C(P5K0168

MW&C(P5K0168

MW&C(P5K0168

11/9/15 17:19

11/9/15 17:19

11/9/15 17:19

11/9/15 17:19

8260B

8260B

8260B

8260B

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-2 (0-1)
Prism Sample ID: 5110135-01
Prism Work Order: 5110135
Time Collected: 11/04/15 14:45
Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis / Date/Time	Analyst Batch ID
1,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0047	0.00036	1	8260B	11/9/15 17:19	MW&C(P5K0168
1,2-Dibromoethane	BRL	mg/kg dry	0.0047	0.00019	1	8260B	11/9/15 17:19	MW&C(P5K0168
1,2-Dichlorobenzene	BRL	mg/kg dry	0.0047	0.00022	1	8260B	11/9/15 17:19	MW&C(P5K0168
1,2-Dichloroethane	BRL	mg/kg dry	0.0047	0.00028	1	8260B	11/9/15 17:19	MW&C(P5K0168
1,2-Dichloropropane	BRL	mg/kg dry	0.0047	0.00029	1	8260B	11/9/15 17:19	MW&C(P5K0168
1,3,5-Trimethylbenzene	BRL	mg/kg dry	0.0047	0.00035	1	8260B	11/9/15 17:19	MW&C(P5K0168
1,3-Dichlorobenzene	BRL	mg/kg dry	0.0047	0.00031	1	8260B	11/9/15 17:19	MW&C(P5K0168
1,3-Dichloropropane	BRL	mg/kg dry	0.0047	0.00023	1	8260B	11/9/15 17:19	MW&C(P5K0168
1,4-Dichlorobenzene	BRL	mg/kg dry	0.0047	0.00018	1	8260B	11/9/15 17:19	MW&C(P5K0168
2,2-Dichloropropane	BRL	mg/kg dry	0.0047	0.00022	1	8260B	11/9/15 17:19	MW&C(P5K0168
2-Chlorotoluene	BRL	mg/kg dry	0.0047	0.00024	1	8260B	11/9/15 17:19	MW&C(P5K0168
4-Chlorotoluene	BRL	mg/kg dry	0.0047	0.00028	1,	8260B	11/9/15 17:19	MW&C(P5K0168
4-Isopropyltoluene	BRL	mg/kg dry	0.0047	0.00023	1	8260B	11/9/15 17:19	MW&C(P5K0168
Acetone	0.052	mg/kg dry	0.047	0.0011	1	8260B	11/9/15 17:19	MW&C(P5K0168
Benzene	BRL	mg/kg dry	0.0028	0.00027	1	8260B	11/9/15 17:19	MW&C(P5K0168
Bromobenzene	BRL	mg/kg dry	0.0047	0.00039	1	8260B	11/9/15 17:19	MW&C(P5K0168
Bromochloromethane	BRL	mg/kg dry	0.0047	0.00026	1	8260B	11/9/15 17:19	MW&C(P5K0168
Bromodichloromethane	BRL	mg/kg dry	0.0047	0.00026	1 .	8260B	11/9/15 17:19	MW&C(P5K0168
Bromoform	BRL	mg/kg dry	0.0047	0.00053	1	8260B	11/9/15 17:19	MW&C(P5K0168
3romomethane	BRL	mg/kg dry	0.0094	0.00058	1	8260B	11/9/15 17:19	MW&C(P5K0168
Carbon Tetrachloride	BRL	mg/kg dry	0.0047	0.00023	1	8260B	11/9/15 17:19	MW&C(P5K0168
Chlorobenzene	BRL	mg/kg dry	0.0047	0.00025	1	8260B	11/9/15 17:19	MW&C(P5K0168
Chloroethane	BRL	mg/kg dry	0.0094	0.00039	1	8260B	11/9/15 17:19	MW&C(P5K0168
Chloroform	BRL	mg/kg dry	0.0047	0.00034	1	8260B	11/9/15 17:19	MW&C(P5K0168
Chloromethane	BRL	mg/kg dry	0.0047	0.00031	1	8260B	11/9/15 17:19	MW&C(P5K0168
cis-1,2-Dichloroethylene	BRL	mg/kg dry	0.0047	0.00020	1	8260B	11/9/15 17:19	MW&C(P5K0168
cis-1,3-Dichloropropylene	BRL	mg/kg dry	0.0047	0.00016	1	8260B	11/9/15 17:19	MW&C(P5K0168
Dibromochloromethane	BRL	mg/kg dry	0.0047	0.00019	1	8260B	11/9/15 17:19	MW&C(P5K0168
Dichlorodifluoromethane	BRL CCV	mg/kg dry	0.0047	0.00021	1	8260B	11/9/15 17:19	MW&C(P5K0168
Ethylbenzene	BRL	mg/kg dry	0.0047	0.00018	1	8260B	11/9/15 17:19	MW&C(P5K0168
sopropyl Ether	BRL	mg/kg dry	0.0047	0.00019	1	8260B	11/9/15 17:19	MW&C(P5K0168
sopropylbenzene (Cumene)	BRL	mg/kg dry	0.0047	0.00028	1	8260B	11/9/15 17:19	MW&C(P5K0168
n,p-Xylenes	BRL	mg/kg dry	0.0094	0.00043	1	8260B	11/9/15 17:19	MW&C(P5K0168
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.047	0.00042	1	8260B	11/9/15 17:19	MW&C(P5K0168
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.094	0.00042	1	8260B	11/9/15 17:19	MW&C(P5K0168
Methyl Isobutyl Ketone	BRL	mg/kg dry	0.047	0.00040	1	8260B	11/9/15 17:19	MW&C(P5K0168
Methylene Chloride	BRL	mg/kg dry	0.0047	0.00026	1	8260B	11/9/15 17:19	MW&C(P5K0168
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.0094	0.00015	1	8260B	11/9/15 17:19	MW&C(P5K0168
Naphthalene	0.027	mg/kg dry	0.0094	0.00015	1	8260B	11/9/15 17:19	MW&C(P5K0168
n-Butylbenzene	BRL	mg/kg dry	0.0047	0.00024	1	8260B	11/9/15 17:19	MW&C(P5K0168
n-Propylbenzene	BRL	mg/kg dry	0.0047	0.00028	1	8260B	11/9/15 17:19	MW&C(P5K0168
p-Xylene	BRL	mg/kg dry	0.0047	0.00019	1	8260B	11/9/15 17:19	MW&C(P5K0168
sec-Butylbenzene	BRL	mg/kg dry	0.0047	0.00023	1	8260B	11/9/15 17:19	MW&C(P5K0168

ATC Group Services, LLC Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-2 (0-1) Prism Sample ID: 5110135-01

Prism Work Order: 5110135 Time Collected: 11/04/15 14:45 Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Styrene	BRL	mg/kg dry	0.0047	0.00028	1	8260B	11/9/15 17:19	MW&C	P5K0168
tert-Butylbenzene	BRL	mg/kg dry	0.0047	0.00016	1	8260B	11/9/15 17:19	MW&C	P5K0168
Tetrachloroethylene	BRL	mg/kg dry	0.0047	0.00022	1	8260B	11/9/15 17:19	MW&C	P5K0168
Toluene	BRL	mg/kg dry	0.0047	0.00027	1	8260B	11/9/15 17:19	MW&C	P5K0168
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0047	0.00028	1	8260B	11/9/15 17:19	MW&C	P5K0168
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0047	0.00025	1	8260B	11/9/15 17:19	MW&C	P5K0168
Trichloroethylene	BRL	mg/kg dry	0.0047	0.00030	1	8260B	11/9/15 17:1	MW&C	P5K0168
Trichlorofluoromethane	0.0020 J	mg/kg dry	0.0047	0.00030	1	8260B	11/9/15 17:19	MW&C	P5K0168
Vinyl acetate	BRL	mg/kg dry	0.023	0.00064	1	8260B	11/9/15 17:1	MW&C	(P5K0168
Vinyl chloride	BRL	mg/kg dry	0.0047	0.00023	1	8260B	11/9/15 17:1	MW&C	P5K0168
Xylenes, total	BRL	mg/kg dry	0.014	0.00088	1	8260B	11/9/15 17:1	9 MW&C	(P5K0168

Surrogate	Recovery	Control Limits
4-Bromofluorobenzene	93 %	70-130
Dibromofluoromethane	106 %	84-123
Toluene-d8	91 %	76-129

ATC Group Services, LLC

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-2 (2-4) Prism Sample ID: 5110135-02

Prism Work Order: 5110135
Time Collected: 11/05/15 12:10

Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parameters									
% Solids	79.1	% by Weight	0.100	0.100	1	*SM2540 G	11/9/15 14:48	ARC	P5K0169
Semivolatile Organic Compound	s by GC/MS								
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.42	0.065	1	8270D	11/10/15 14:2	26 JMV	P5K0151
1,2-Dichlorobenzene	BRL	mg/kg dry	0.42	0.063	1	8270D	11/10/15 14:	26 JMV	P5K0151
1,3-Dichlorobenzene	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 14:	26 JMV	P5K0151
1,4-Dichlorobenzene	BRL	mg/kg dry	0.42	0.061	1	8270D	11/10/15 14:	26 JMV	P5K0151
1-Methylnaphthalene	BRL	mg/kg dry	0.42	0.080	1	8270D	11/10/15 14:	26 JMV	P5K0151
2,4,6-Trichlorophenol	BRL	mg/kg dry	0.42	0.078	1	8270D	11/10/15 14:	26 JMV	P5K0151
2,4-Dichlorophenol	BRL	mg/kg dry	0.42	0.081	1	8270D	11/10/15 14:	26 J M V	P5K0151
2,4-Dimethylphenol	BRL	mg/kg dry	0.42	0.064	1	8270D	11/10/15 14:	26 JMV	P5K0151
2,4-Dinitrophenol	BRL	mg/kg dry	0.42	0.058	1	8270D	11/10/15 14:	26 JMV	P5K0151
2,4-Dinitrotoluene	BRL	mg/kg dry	0.42	0.051	1	8270D	11/10/15 14:	26 JMV	P5K0151
2,6-Dinitrotoluene	BRL	mg/kg dry	0.42	0.055	1	8270D	11/10/15 14:	26 JMV	P5K0151
2-Chloronaphthalene	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 14:2	26 JMV	P5K0151
2-Chlorophenol	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 14:2	26 JMV	P5K0151
2-Methylnaphthalene	BRL	mg/kg dry	0.42	0.067	1	8270D	11/10/15 14:	26 JMV	P5K0151
2-Methylphenol	BRL	mg/kg dry	0.42	0.053	1	8270D	11/10/15 14:	26 JMV	P5K0151
2-Nitrophenol	BRL	mg/kg dry	0.42	0.076	1	8270D	11/10/15 14:	26 JMV	P5K0151
3,3'-Dichlorobenzidine	BRL	mg/kg dry	0.42	0.082	1	8270D	11/10/15 14:	26 JMV	P5K0151
3/4-Methylphenol	BRL	mg/kg dry	0.42	0.051	1	8270D	11/10/15 14:	26 JMV	P5K0151
4,6-Dinitro-2-methylphenol	BRL	mg/kg dry	0.42	0,063	1	8270D	11/10/15 14:	26 JMV	P5K0151
4-Bromophenyl phenyl ether	BRL	mg/kg dry	0.42	0.072	1	8270D	11/10/15 14:	26 JMV	P5K0151
4-Chloro-3-methylphenol	BRL	mg/kg dry	0.42	0.058	1	8270D	11/10/15 14:	26 JMV	P5K0151
4-Chloroaniline	BRL	mg/kg dry	0.42	0.050	1	8270D	11/10/15 14:	26 JMV	P5K0151
4-Chlorophenyl phenyl ether	BRL	mg/kg dry	0.42	0.054	1	8270D	11/10/15 14:	26 JMV	P5K0151
4-Nitrophenol	BRL	mg/kg dry	0.42	0.064	1	8270D	11/10/15 14:	26 JMV	P5K0151
Acenaphthene	BRL	mg/kg dry	0.42	0.057	1	8270D	11/10/15 14:	26 JMV	P5K0151
Acenaphthylene	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 14:	26 JMV	P5K0151
Anthracene	BRL	mg/kg dry	0.42	0.067	1	8270D	11/10/15 14:	26 JMV	P5K0151
Azobenzene	BRL	mg/kg dry	0.42	0.055	1	8270D	11/10/15 14:	26 JMV	P5K0151
Benzo(a)anthracene	0.18 J	mg/kg dry	0.42	0.055	1	8270D	11/10/15 14:2	6 JMV	P5K0151
Benzo(a)pyrene	0.15 J	mg/kg dry	0.42	0.045	1	8270D	11/10/15 14:2	6 JMV	P5K0151
Benzo(b)fluoranthene	0.26 J	mg/kg dry	0.42	0.048	1	8270D	11/10/15 14:2	6 JMV	P5K0151
Benzo(g,h,i)perylene	BRL.	mg/kg dry	0.42	0.046	1	8270D	11/10/15 14:		P5K0151
Benzo(k)fluoranthene	BRL	mg/kg dry	0.42	0.055	1	8270D	11/10/15 14:		P5K0151
Benzoic Acid	BRL	mg/kg dry	0.42	0.035	1	8270D	11/10/15 14:		P5K0151
Benzyl alcohol	BRL	mg/kg dry	0.42	0.055	1	8270D	11/10/15 14:		P5K0151
benzyi aiconoi bis(2-Chloroethoxy)methane	BRL	mg/kg dry	0.42	0.033	1	8270D	11/10/15 14:		P5K0151
• • • • • • • • • • • • • • • • • • • •	BRL		0.42	0.059	1	8270D	11/10/15 14:		P5K0151
Bis(2-Chloroethyl)ether	BRL	mg/kg dry mg/kg dry	0.42	0.039	1	8270D	11/10/15 14:		P5K0151
Bis(2-chloroisopropyl)ether						8270D	11/10/15 14:		P5K0151
Bis(2-Ethylhexyl)phthalate	BRL	mg/kg dry	0.42	0.062	1	92700	11/10/10 14.	-5 5141 4	

Analyst

Batch

ATC Group Services, LLC Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

1,1,2,2-Tetrachloroethane

1,1,2-Trichloroethane

1,1-Dichloroethane

1,1-Dichloroethylene

1,1-Dichloropropylene

1,2,3-Trichlorobenzene

1,2,3-Trichloropropane

1,2,4-Trichlorobenzene

1,2,4-Trimethylbenzene

Parameter

Project: Kesler Mill (Brownfield)

Units

Report

Sample Matrix: Solid

Result

BRI.

BRL

BRL

BRL

BRL

BRL.

BRL

BRI

BRL

Client Sample ID: GW-2 (2-4) Prism Sample ID: 5110135-02 Prism Work Order: 5110135

Time Collected: 11/05/15 12:10 Time Submitted: 11/06/15 09:50

Analysis

Method

8260B

8260B

8260B

8260B

8260B

8260B

8260B

8260B

8260B

11/9/15 17:50

11/9/15 17:50

11/9/15 17:50

11/9/15 17:50

11/9/15 17:50

11/9/15 17:50

11/9/15 17:50

11/9/15 17:50

11/9/15 17:50

Dilution

MDL

			Limit	F	actor		Date/Time			ID
Butyl benzyl phthalate	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 14	1:26	JM∨	P5K0151
Chrysene	0.16 J	mg/kg dry	0.42	0.053	1	8270D	11/10/15 14	:26	JMV	P5K0151
Dibenzo(a,h)anthracene	BRL	mg/kg dry	0.42	0.051	1	8270D	11/10/15 14	1:26	JMV	P5K0151
Dibenzofuran	BRL	mg/kg dry	0.42	0.063	1	8270D	11/10/15 14	1:26	JMV	P5K0151
Diethyl phthalate	BRL	mg/kg dry	0.42	0.057	1	8270D	11/10/15 14	1:26	JM∨	P5K0151
Dimethyl phthalate	BRL	mg/kg dry	0.42	0.055	1	8270D	11/10/15 1	4:26	JMV	P5K0151
Di-n-butyl phthalate	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 1	4:26	JMV	P5K0151
Di-n-octyl phthalate	BRL	mg/kg dry	0.42	0.051	1	8270D	11/10/15 1	4:26	JMV	P5K0151
Fluoranthene	0.37 J	mg/kg dry	0.42	0.053	1	8270D	11/10/15 14	1:26	JMV	P5K0151
Fluorene	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 1	4:26	JM∨	P5K0151
Hexachlorobenzene	BRL	mg/kg dry	0.42	0.066	1	8270D	11/10/15 1	4:26	JMV	P5K0151
Hexachlorobutadiene	BRL	mg/kg dry	0.42	0.075	1	8270D	11/10/15 1	4:26	JM∨	P5K0151
Hexachlorocyclopentadiene	BRL	mg/kg dry	0.42	0.074	1	8270D	11/10/15 1	4:26	JM∨	P5K0151
Hexachloroethane	BRL	mg/kg dry	0.42	0.070	1	8270D	11/10/15 1	4:26	JMV	P5K0151
Indeno(1,2,3-cd)pyrene	BRL	mg/kg dry	0.42	0.048	1	8270D	11/10/15 1	4:26	JM∨	P5K0151
Isophorone	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 1	4:26	JMV	P5K0151
Naphthalene	BRL	mg/kg dry	0.42	0.067	1	8270D	11/10/15 1	4:26	JMV	P5K0151
Nitrobenzene ·	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 1	4:26	JMV	P5K0151
N-Nitroso-di-n-propylamine	BRL	mg/kg dry	0.42	0.066	1	8270D	11/10/15 1	4:26	JMV	P5K0151
N-Nitrosodiphenylamine	BRL	mg/kg dry	0.42	0.063	1	8270D	11/10/15 1	4:26	JMV	P5K0151
Pentachlorophenol	BRL.	mg/kg dry	0.42	0.049	1	8270D	11/10/15 1	4:26	JMV	P5K0151
Phenanthrene	0.25 J	mg/kg dry	0.42	0.054	1	8270D	11/10/15 1	4:26	JMV	P5K0151
Phenol	BRL	mg/kg dry	0.42	0.062	1	8270D	11/10/15 1	4:26	JMV	P5K0151
Pyrene	0.29 J	mg/kg dry	0.42	0.055	1	8270D	11/10/15 1	4:26	JMV	P5K0151
			Surrogate			Reco	very	(Control	Limits
			2,4,6-Tribro	mophenol		8	3 %		39-132	
			2-Fluorobip	henyl		8	2 %		44-115	
			2-Fluoroph	enol		7	6 %		35-115	
			Nitrobenze	ne-d5		7	4 %		37-122	
			Phenol-d5			7	8 %		34-121	
			Terphenyl-	114		8	5 %		54-127	
Volatile Organic Compounds by	GC/MS									
1,1,1,2-Tetrachioroethane	BRL	mg/kg dry	0.0047	0.00039	1	8260B	11/9/15 17	':50	MW&	C(P5K016
1,1,1-Trichloroethane	BRL	mg/kg dry	0.0047	0.00023	1	8260B	11/9/15 17	':50	MW&	C(P5K016

0.0047

0.0047

0.0047

0.0047

0.0047

0.0047

0.0047

0.0047

0.0047

0.00032

0.00042

0.00013

0.00021

0.00026

0.00027

0.00060

0.00035

0.00036

1

1

1

mg/kg dry

mg/kg dry

mg/kg dry

mg/kg dry

mg/kg dry

mg/kg dry

mg/kg dry

mg/kg dry

mg/kg dry

MW&C(P5K0168

MW&C(P5K0168

MW&C(P5K0168

MW&C(P5K0168

MW&C(P5K0168

MW&C(P5K0168

MW&C(P5K0168

MW&C(P5K0168

MW&C(P5K0168

ATC Group Services, LLC

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-2 (2-4)

Prism Sample ID: 5110135-02 Prism Work Order: 5110135 Time Collected: 11/05/15 12:10

Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
,2-Dibromoethane	BRL	mg/kg dry	0.0047	0.00019	1	8260B	11/9/15 17:50	MW&C	P5K0168
,2-Dichlorobenzene	BRL	mg/kg dry	0.0047	0.00022	1	8260B	11/9/15 17:50	MW&C	P5K0168
,2-Dichloroethane	BRL	mg/kg dry	0.0047	0.00028	1	8260B	11/9/15 17:50	MW&C	P5K0168
,2-Dichloropropane	BRL	mg/kg dry	0.0047	0.00029	1	8260B	11/9/15 17:50	MW&C	P5K0168
,3,5-Trimethylbenzene	BRL	mg/kg dry	0.0047	0.00035	1	8260B	11/9/15 17:50	MW&C	P5K0168
,3-Dichlorobenzene	BRL	mg/kg dry	0.0047	0.00031	1	8260B	11/9/15 17:50	MW&C0	P5K0168
,3-Dichloropropane	BRL	mg/kg dry	0.0047	0.00024	1	8260B	11/9/15 17:50	MW&C0	P5K0168
,4-Dichlorobenzene	BRL	mg/kg dry	0.0047	0.00018	1	8260B	11/9/15 17:50	MW&C	P5K0168
,2-Dichloropropane	BRL	mg/kg dry	0.0047	0.00022	1	8260B	11/9/15 17:50	MW&C	P5K0168
-Chlorotoluene	BRL	mg/kg dry	0.0047	0.00024	1	8260B	11/9/15 17:50	MW&C	P5K0168
-Chlorotoluene	BRL	mg/kg dry	0,0047	0.00028	1	8260B	11/9/15 17:50		P5K0168
-isopropyltoluene	BRL	mg/kg dry	0.0047	0.00023	1	8260B	11/9/15 17:50		P5K0168
cetone	BRL	mg/kg dry	0.047	0.0011	1	8260B	11/9/15 17:50	MW&C0	P5K0168
enzene	BRL	mg/kg dry	0.0028	0.00027	1	8260B	11/9/15 17:50	MW&C	P5K0168
romobenzene	BRL	mg/kg dry	0.0047	0.00039	1	8260B	11/9/15 17:50		P5K0168
romochloromethane	BRL	mg/kg dry	0.0047	0.00026	1	8260B	11/9/15 17:50	MW&C	P5K0168
romodichloromethane	BRL	mg/kg dry	0.0047	0.00026	1	8260B	11/9/15 17:50	MW&C(P5K0168
romoform	BRL	mg/kg dry	0.0047	0.00053	1	8260B	11/9/15 17:50	MW&C0	P5K0168
romomethane	BRL	mg/kg dry	0.0094	0.00058	1	8260B	11/9/15 17:50	MW&C0	P5K0168
arbon Tetrachloride	BRL	mg/kg dry	0.0047	0.00023	1	8260B	11/9/15 17:50	MW&C	P5K0168
hlorobenzene	BRL	mg/kg dry	0.0047	0.00025	1	8260B	11/9/15 17:50	MW&C	P5K0168
hloroethane	BRL.	mg/kg dry	0.0094	0.00039	1	8260B	11/9/15 17:50	MW&C0	P5K0168
hloroform	BRL	mg/kg dry	0.0047	0.00034	1	8260B	11/9/15 17:50	MW&C(P5K0168
hloromethane	BRL	mg/kg dry	0.0047	0.00032	1	8260B	11/9/15 17:50	MW&C0	P5K0168
is-1,2-Dichloroethylene	BRL	mg/kg dry	0.0047	0.00020	1	8260B	11/9/15 17:50	MW&C0	P5K0168
is-1,3-Dichloropropylene	BRL	mg/kg dry	0.0047	0.00016	1	8260B	11/9/15 17:50	MW&C0	P5K0168
ibromochloromethane	BRL	mg/kg dry	0.0047	0.00019	1	8260B	11/9/15 17:50	MW&C	P5K0168
richlorodifluoromethane	BRL CCV	mg/kg dry	0.0047	0.00021	1	8260B	11/9/15 17:50	MW&C	P5K0168
thylbenzene	BRL	mg/kg dry	0.0047	0.00018	1	8260B	11/9/15 17:50	MW&C	P5K0168
sopropyl Ether	BRL	mg/kg dry	0.0047	0.00019	1	8260B	11/9/15 17:50	MW&C	P5K0168
sopropylbenzene (Cumene)	BRL	mg/kg dry	0.0047	0.00028	1	8260B	11/9/15 17:50	MW&C	P5K0168
n,p-Xylenes	BRL	mg/kg dry	0.0094	0.00043	1	8260B	11/9/15 17:50	MW&C	P5K0168
fethyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.047	0.00042	1	8260B	11/9/15 17:50	MW&C	P5K0168
lethyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.094	0.00042	1	8260B	11/9/15 17:50	MW&C	P5K0168
lethyl isobutyl Ketone	BRL	mg/kg dry	0.047	0.00040	1	8260B	11/9/15 17:50	MW&C	P5K0168
fethylene Chloride	BRL	mg/kg dry	0.0047	0.00026	1	8260B	11/9/15 17:50	MW&C	P5K0168
fethyl-tert-Butyl Ether	BRL	mg/kg dry	0.0094	0.00015	1	8260B	11/9/15 17:50	MW&C	P5K0168
laphthalene	BRL	mg/kg dry	0.0094	0.00015	1	8260B	11/9/15 17:50	MW&C	P5K0168
-Butylbenzene	BRL	mg/kg dry	0.0047	0.00024	1	8260B	11/9/15 17:50	MW&C	P5K0168
-Propylbenzene	BRL	mg/kg dry	0.0047	0.00028	1	8260B	11/9/15 17:50	MW&C	P5K0168
-Xylene	BRL	mg/kg dry	0.0047	0.00019	1	8260B	11/9/15 17:50	MW&C	P5K0168
ec-Butylbenzene	BRL	mg/kg dry	0.0047	0.00023	1	8260B	11/9/15 17:50		P5K0168
tyrene	BRL	mg/kg dry	0.0047	0.00028	1	8260B	11/9/15 17:50		P5K0168

12/17/2015

ATC Group Services, LLC

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Client Sample ID: GW-2 (2-4)

Prism Sample ID: 5110135-02

Prism Work Order: 5110135 Time Collected: 11/05/15 12:10

Time Submitted: 11/06/15 09:50

Sample	Matrix:	Solid	

Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	•	atch ID
BRL	mg/kg dry	0.0047	0.00016	1	8260B	11/9/15 17:50	MW&C(P5K	(0168
BRL	mg/kg dry	0.0047	0.00022	1	8260B	11/9/15 17:50	MW&C(P5K	<0168
BRL	mg/kg dry	0.0047	0.00027	1	8260B	11/9/15 17:5	MW&C(P5K	<0168
BRL	mg/kg dry	0.0047	0.00028	1	8260B	11/9/15 17:50	MW&C(P5K	<0168
BRL	mg/kg dry	0.0047	0.00025	1	8260B	11/9/15 17:5	MW&C(P5K	<0168
BRL	mg/kg dry	0.0047	0.00030	1	8260B	11/9/15 17:5	MW&C(P5K	<0168
BRL	mg/kg dry	0.0047	0.00030	1	8260B	11/9/15 17:5	MW&C(P5K	<0168
BRL	mg/kg dry	0.023	0.00064	1	8260B	11/9/15 17:5	MW&C(P5K	K0168
BRL	mg/kg dry	0.0047	0.00023	1 .	8260B	11/9/15 17:5	0 MW&C(P5K	K0168
BRL	mg/kg dry	0.014	0.00088	1	8260B	11/9/15 17:5	0 MW&C(P5K	K0168
	BRL BRL BRL BRL BRL BRL BRL BRL	BRL mg/kg dry BRL mg/kg dry BRL mg/kg dry BRL mg/kg dry BRL mg/kg dry BRL mg/kg dry BRL mg/kg dry BRL mg/kg dry BRL mg/kg dry BRL mg/kg dry BRL mg/kg dry	BRL mg/kg dry 0.0047 BRL mg/kg dry 0.0047 BRL mg/kg dry 0.0047 BRL mg/kg dry 0.0047 BRL mg/kg dry 0.0047 BRL mg/kg dry 0.0047 BRL mg/kg dry 0.0047 BRL mg/kg dry 0.0047 BRL mg/kg dry 0.0047 BRL mg/kg dry 0.0047 BRL mg/kg dry 0.0047 BRL mg/kg dry 0.0047	BRL mg/kg dry 0.0047 0.00016 BRL mg/kg dry 0.0047 0.00022 BRL mg/kg dry 0.0047 0.00027 BRL mg/kg dry 0.0047 0.00028 BRL mg/kg dry 0.0047 0.00028 BRL mg/kg dry 0.0047 0.00025 BRL mg/kg dry 0.0047 0.00030 BRL mg/kg dry 0.0047 0.00030 BRL mg/kg dry 0.0047 0.00030 BRL mg/kg dry 0.0047 0.00030 BRL mg/kg dry 0.0047 0.00030	BRL mg/kg dry 0.0047 0.00016 1 BRL mg/kg dry 0.0047 0.00022 1 BRL mg/kg dry 0.0047 0.00027 1 BRL mg/kg dry 0.0047 0.00028 1 BRL mg/kg dry 0.0047 0.00025 1 BRL mg/kg dry 0.0047 0.00030 1 BRL mg/kg dry 0.0047 0.00030 1 BRL mg/kg dry 0.0047 0.00030 1 BRL mg/kg dry 0.023 0.00064 1 BRL mg/kg dry 0.0047 0.00023 1	BRL mg/kg dry 0.0047 0.00016 1 8260B BRL mg/kg dry 0.0047 0.00022 1 8260B BRL mg/kg dry 0.0047 0.00027 1 8260B BRL mg/kg dry 0.0047 0.00028 1 8260B BRL mg/kg dry 0.0047 0.00025 1 8260B BRL mg/kg dry 0.0047 0.00030 1 8260B BRL mg/kg dry 0.0047 0.00030 1 8260B BRL mg/kg dry 0.023 0.00064 1 8260B BRL mg/kg dry 0.0047 0.00023 1 8260B	BRL mg/kg dry 0.0047 0.00016 1 8260B 11/9/15 17:50 BRL mg/kg dry 0.0047 0.00022 1 8260B 11/9/15 17:50 BRL mg/kg dry 0.0047 0.00027 1 8260B 11/9/15 17:50 BRL mg/kg dry 0.0047 0.00028 1 8260B 11/9/15 17:50 BRL mg/kg dry 0.0047 0.00028 1 8260B 11/9/15 17:50 BRL mg/kg dry 0.0047 0.00025 1 8260B 11/9/15 17:50 BRL mg/kg dry 0.0047 0.00030 1 8260B 11/9/15 17:50 BRL mg/kg dry 0.0047 0.00030 1 8260B 11/9/15 17:50 BRL mg/kg dry 0.0047 0.00030 1 8260B 11/9/15 17:50 BRL mg/kg dry 0.0047 0.00030 1 8260B 11/9/15 17:50 BRL mg/kg dry 0.0047 0.00030 1 8260B 11/9/15 17:50 BRL mg/kg dry 0.0047 0.00030 1 8260B 11/9/15 17:50 BRL mg/kg dry 0.0047 0.00030 1 8260B 11/9/15 17:50	BRL mg/kg dry 0.0047 0.00022 1 8260B 11/9/15 17:50 MW&C(P5k BRL mg/kg dry 0.0047 0.00022 1 8260B 11/9/15 17:50 MW&C(P5k BRL mg/kg dry 0.0047 0.00027 1 8260B 11/9/15 17:50 MW&C(P5k BRL mg/kg dry 0.0047 0.00027 1 8260B 11/9/15 17:50 MW&C(P5k BRL mg/kg dry 0.0047 0.00028 1 8260B 11/9/15 17:50 MW&C(P5k BRL mg/kg dry 0.0047 0.00028 1 8260B 11/9/15 17:50 MW&C(P5k BRL mg/kg dry 0.0047 0.00025 1 8260B 11/9/15 17:50 MW&C(P5k BRL mg/kg dry 0.0047 0.00030 1 8260B 11/9/15 17:50 MW&C(P5k BRL mg/kg dry 0.0047 0.00030 1 8260B 11/9/15 17:50 MW&C(P5k BRL mg/kg dry 0.0047 0.00030 1 8260B 11/9/15 17:50 MW&C(P5k BRL mg/kg dry 0.0047 0.00030 1 8260B 11/9/15 17:50 MW&C(P5k BRL mg/kg dry 0.0047 0.00030 1 8260B 11/9/15 17:50 MW&C(P5k BRL mg/kg dry 0.0047 0.00030 1 8260B 11/9/15 17:50 MW&C(P5k BRL mg/kg dry 0.0047 0.00033 1 82

Surrogate	Recovery	Control Limits
4-Bromofluorobenzene	84 %	70-130
Dibromofluoromethane	106 %	84-123
Toluene-d8	84 %	76-129

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-5 (0-1)
Prism Sample ID: 5110135-03
Prism Work Order: 5110135

Time Collected: 11/05/15 10:35 Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Tim		nalyst	Batch ID
Diesel Range Organics by GC	/FID				· · · · · · · · · · · · · · · · · · ·					
Diesel Range Organics	73	mg/kg dry	8.9	1.1	1	*8015C	11/12/15	18:41	ZRC	P5K0200
			Surrogate			Recov	ery		Control	Limits
			o-Terphenyl			67	%		49-124	
Gasoline Range Organics by C										
Gasoline Range Organics	BRL	mg/kg dry	5.4	1.1	50	*8015C	11/10/15	3:16	ANG	P5K0162
			Surrogate			Recov	ery		Control i	_imits
			a,a,a-Trifluo	rotoluene		84	%		50-137	
General Chemistry Parameters	<u> </u>	···								
% Solids	78.7	% by Weight	0.100	0.100	1	*SM2540 G	11/9/15 1	4:45	ARC	P5K0169
Polychlorinated Biphenyls (PC	CBs) by GC/ECD									
Aroclor 1016	BRL	mg/kg dry	0.063	0.0060	1	8082A	11/13/15	4:02	JMC	P5K0219
Arodor 1221	BRL	mg/kg dry	0.13	0.051	1	8082A	11/13/15	4:02	JMC	P5K0219
Aroclor 1232	BRL	mg/kg dry	0.13	0.017	1	8082A	11/13/15	4:02	JMC	P5K0219
Aroclor 1242	BRL	mg/kg dry	0.063	0.017	1	8082A	11/13/15	4:02	JMC	P5K0219
Aroclor 1248	BRL	mg/kg dry	0.063	0.013	1	8082A	11/13/15	4:02	JMC	P5K0219
Aroclor 1254	BRL	mg/kg dry	0.063	0.016	1	8082A	11/13/15	4:02	JMC	P5K0219
Aroclor 1260	BRL	mg/kg dry	0.063	0.0088	1	8082A	11/13/15	4:02	JMC	P5K0219
			Surrogate			Recov	ery		Control I	imits
			Tetrachloro-	n-xylene		62	%		36-182	
			Decachlorob	iphenyl		92	%		34-182	
Semivolatile Organic Compou	nds by GC/MS									, <u> </u>
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.42	0.065	1	8270D	11/10/15	18:12	JM∨	P5K0151
A A BOLL I I I I I I I I I I I I I I I I I I					1	8270D	11/10/15	18:12	JMV	P5K0151
1,2-Dichlorobenzene	BRL	mg/kg dry	0.42	0.064	,					P5K0151
	BRL BRL	mg/kg dry mg/kg dry	0.42 0.42	0.064 0.059	1	8270D	11/10/15	18:12	JMV	
1,3-Dichlorobenzene							11/10/15 11/10/15			P5K0151
1,3-Dichlorobenzene 1,4-Dichlorobenzene	BRL	mg/kg dry	0.42	0.059	1	8270D		18:12	JMV	P5K0151
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene	BRL BRL	mg/kg dry mg/kg dry	0.42 0.42	0.059 0.061	1	8270D 8270D	11/10/15	18:12 18:12	JM∨ VML	P5K0151 P5K0151
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol	BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry	0.42 0.42 0.42	0.059 0.061 0.081	1 1 1	8270D 8270D 8270D	11/10/15 11/10/15	18:12 18:12 18:12	JMV JMV	P5K0151 P5K0151 P5K0151
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol	BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.42 0.42 0.42 0.42	0.059 0.061 0.081 0.079	1 1 1	8270D 8270D 8270D 8270D	11/10/15 11/10/15 11/10/15	18:12 18:12 18:12 18:12	JMV JMV JMV	P5K0151 P5K0151
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol	BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.42 0.42 0.42 0.42 0.42	0.059 0.061 0.081 0.079 0.081	1 1 1 1	8270D 8270D 8270D 8270D 8270D	11/10/15 11/10/15 11/10/15 11/10/15	18:12 18:12 18:12 18:12 18:12	JMV JMV JMV	P5K0151 P5K0151 P5K0151
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol	BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.42 0.42 0.42 0.42 0.42 0.42	0.059 0.061 0.081 0.079 0.081 0.064	1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 11/10/15 11/10/15 11/10/15 11/10/15	18:12 18:12 18:12 18:12 18:12 18:12	JWA JWA JWA JWA JWA JWA	P5K0151 P5K0151 P5K0151 P5K0151
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene	BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.42 0.42 0.42 0.42 0.42 0.42	0.059 0.061 0.081 0.079 0.081 0.064 0.058	1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15	18:12 18:12 18:12 18:12 18:12 18:12	NMC NMC NMC NMC NMC	P5K0151 P5K0151 P5K0151 P5K0151 P5K0151
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	0.059 0.061 0.081 0.079 0.081 0.064 0.058	1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15	18:12 18:12 18:12 18:12 18:12 18:12 18:12	TWA TWA TWA TWA TWA TWA	P5K0151 P5K0151 P5K0151 P5K0151 P5K0151
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene	BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	0.059 0.061 0.081 0.079 0.081 0.064 0.058 0.051	1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15	18:12 18:12 18:12 18:12 18:12 18:12 18:12 18:12	TWA TWA TWA TWA TWA TWA TWA TWA	P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol	BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	0.059 0.061 0.081 0.079 0.081 0.064 0.058 0.051 0.056	1 1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15	18:12 18:12 18:12 18:12 18:12 18:12 18:12 18:12	NMV NWV NWV NWV NWV NWV NWV NWV	P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	0.059 0.061 0.081 0.079 0.081 0.064 0.058 0.051 0.056 0.061	1 1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15	18:12 18:12 18:12 18:12 18:12 18:12 18:12 18:12 18:12	TWA TWA TWA TWA TWA TWA TWA TWA TWA	P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	0.059 0.061 0.081 0.079 0.081 0.064 0.058 0.051 0.056 0.061 0.059 0.067	1 1 1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15	18:12 18:12 18:12 18:12 18:12 18:12 18:12 18:12 18:12 18:12	TWA TWA TWA TWA TWA TWA TWA TWA TWA TWA	P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	0.059 0.061 0.081 0.079 0.081 0.064 0.058 0.051 0.056 0.061 0.059 0.067	1 1 1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15	18:12 18:12 18:12 18:12 18:12 18:12 18:12 18:12 18:12 18:12	TWANTAMANTAMANTAMANTAMANTAMANTAMANTAMANT	P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Methylphenol	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	0.059 0.061 0.081 0.079 0.081 0.064 0.058 0.051 0.056 0.061 0.059 0.067 0.054 0.076	1 1 1 1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15 11/10/15	18:12 18:12 18:12 18:12 18:12 18:12 18:12 18:12 18:12 18:12 18:12	TWANT TWANT	P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151 P5K0151

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-5 (0-1)
Prism Sample ID: 5110135-03
Prism Work Order: 5110135
Time Collected: 11/05/15 10:35

Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analyst Date/Time	Batch ID
4-Bromophenyl phenyl ether	BRL	mg/kg dry	0.42	0.072	1	8270D	11/10/15 18:12 JMV	P5K0151
4-Chloro-3-methylphenol	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 18:12 JMV	P5K0151
1-Chloroaniline	BRL	mg/kg dry	0.42	0.050	1	8270D	11/10/15 18:12 JMV	P5K0151
-Chlorophenyl phenyl ether	BRL .	mg/kg dry	0.42	0.054	1	8270D	11/10/15 18:12 JMV	P5K0151
I-Nitrophenol	BRL	mg/kg dry	0.42	0.065	1	8270D	11/10/15 18:12 JMV	P5K0151
Acenaphthene	BRL	mg/kg dry	0.42	0.057	1	8270D	11/10/15 18:12 JMV	P5K0151
Acenaphthylene	BRL	mg/kg dry	0.42	0.061	1	8270D	11/10/15 18:12 JMV	P5K0151
Anthracene	0.17 J	mg/kg dry	0.42	0.068	1	8270D	11/10/15 18:12 JMV	P5K0151
Azobenzene	BRL	mg/kg dry	0.42	0.055	1	8270D	11/10/15 18:12 JMV	P5K0151
Benzo(a)anthracene	0.66	mg/kg dry	0.42	0.055	1	8270D	11/10/15 18:12 JMV	P6K0151
Benzo(a)pyrene	0.66	mg/kg dry	0.42	0.045	1	8270D	11/10/15 18:12 JMV	P5K0151
Benzo(b)fluoranthene	0.87	mg/kg dry	0.42	0.049	1	8270D	11/10/15 18:12 JMV	P5K0151
Benzo(g,h,i)perylene	0.43	mg/kg dry	0.42	0.046	1	8270D	11/10/15 18:12 JMV	P5K0151
Benzo(k)fluoranthene	0.44	mg/kg dry	0.42	0.055	1	8270D	11/10/15 18:12 JMV	P5K0151
Benzoic Acid	BRL	mg/kg dry	0.42	0.035	1	8270D	11/10/15 18:12 JMV	P5K0151
Benzyl alcohol	BRL	mg/kg dry	0.42	0.055	1	8270D	11/10/15 18:12 JMV	P5K0151
bis(2-Chloroethoxy)methane	BRL	mg/kg dry	0.42	0.073	1	8270D	11/10/15 18:12 JMV	P5K0151
Bis(2-Chloroethyl)ether	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 18:12 JMV	P5K0151
Bis(2-chloroisopropyl)ether	BRL	mg/kg dry	0.42	0.072	1	8270D	11/10/15 18:12 JMV	P5K0151
3is(2-Ethylhexyl)phthalate	BRL.	mg/kg dry	0.42	0.062	1	8270D	11/10/15 18:12 JMV	P5K0151
Butyl benzyl phthalate	BRL	mg/kg dṛy	0.42	0.060	1	8270D	11/10/15 18:12 JMV	P5K0151
Chrysene	0.76	mg/kg dry	0.42	0.053	1	8270D	11/10/15 18:12 JMV	P5K0151
Dibenzo(a,h)anthracene	0.11 J	mg/kg dry	0.42	0.051	1	8270D	11/10/15 18:12 JMV	P5K0151
Dibenzofuran	BRL	mg/kg dry	0.42	0.064	1	8270D	11/10/15 18:12 JMV	P5K0151
Diethyl phthalate	BRL	mg/kg dry	0.42	0.058	1	8270D	11/10/15 18:12 JMV	P5K0151
Dimethyl phthalate	BRL	mg/kg dry	0.42	0.055	1	8270D	11/10/15 18:12 JMV	P5K0151
Di-n-butyl phthalate	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 18:12 JMV	P5K0151
Di-n-octyl phthalate	BRL	mg/kg dry	0.42	0.052	1	8270D	11/10/15 18:12 JMV	P5K015
Fluoranthene	1.3	mg/kg dry	0.42	0.053	1	8270D	11/10/15 18:12 JMV	P5K015
Fluorene	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 18:12 JMV	P5K015
Hexachlorobenzene	BRL	mg/kg dry	0.42	0.066	1	8270D	11/10/15 18:12 JMV	P5K015
Hexachlorobutadiene	BRL	mg/kg dry	0.42	0.075	1	8270D	11/10/15 18:12 JMV	P5K015
Hexachlorocyclopentadiene	BRL	mg/kg dry	0.42	0.075	1	8270D	11/10/15 18:12 JMV	P5K015
Hexachloroethane	BRL	mg/kg dry	0.42	0.070	1	8270D	11/10/15 18:12 JMV	P5K015
Indeno(1,2,3-cd)pyrene	0.43	mg/kg dry	0.42	0.048	1	8270D	11/10/15 18:12 JMV	P5K015
Isophorone	BRL	mg/kg dry	0.42	0.057	1	8270D	11/10/15 18:12 JMV	P5K015
Naphthalene	BRL	mg/kg dry	0.42	0.067	1	8270D	11/10/15 18:12 JMV	P5K015
Nitrobenzene	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 18:12 JMV	P5K015
N-Nitroso-di-n-propylamine	BRL	mg/kg dry	0.42	0.066	1	8270D	11/10/15 18:12 JMV	P5K015
N-Nitrosodiphenylamine	BRL	mg/kg dry	0.42	0.064	1	8270D	11/10/15 18:12 JMV	P5K015
Pentachlorophenol	BRL	mg/kg dry	0.42	0.049		8270D	11/10/15 18:12 JMV	P5K015
Phenanthrene	0.62	mg/kg dry	0.42	0.054		8270D	11/10/15 18:12 JMV	P5K015
Phenol	BRL	mg/kg dry	0.42	0.062		8270D	11/10/15 18:12 JMV	P5K015

12/17/2015

ATC Group Services, LLC
Attn: Christine Schaefer
7606 Whitehall Executive Center Drive, Suite
Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Client Sample ID: GW-5 (0-1)
Prism Sample ID: 5110135-03
Prism Work Order: 5110135
Time Collected: 11/05/15 10:35
Time Submitted: 11/06/15 09:50

Sample Matrix: Solid

Volatile Organic Compounds by G 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry	0.42 Surrogate 2,4,6-Tribro 2-Fluorophe Nitrobenzer Phenol-d5 Terphenyl-c	henyl enol ne-d5	1	8 ⁻ 7 ⁻ 7-	11/10/15 18:12 very 6 % 1 % 1 % 1 % 4 % 7 %	2 JMV Control Li 39-132 44-115 35-115 37-122 34-121 54-127	P5K0161 mits
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	BRL BRL BRL BRL	mg/kg dry	2,4,6-Tribro 2-Fluorobip 2-Fluorophe Nitrobenzer Phenol-d5 Terphenyl-c	henyl enol ne-d5		86 8 7 7	6 % 1 % 1 % 1 % 4 %	39-132 44-115 35-115 37-122 34-121	mits
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	BRL BRL BRL BRL	mg/kg dry	2-Fluorobip 2-Fluorophe Nitrobenzer Phenol-d5 Terphenyl-c	henyl enol ne-d5		8 ⁻ 7 ⁻ 7-	1 % 1 % 1 % 4 %	44-115 35-115 37-122 34-121	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	BRL BRL BRL BRL	mg/kg dry	2-Fluorophe Nitrobenzer Phenol-d5 Terphenyl-c	enol ne-d5		7 [.] 7 [.] 7 [.]	1 % 1 % 4 %	35-115 37-122 34-121	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	BRL BRL BRL BRL	mg/kg dry	Nitrobenzer Phenol-d5 Terphenyl-d	ne-d5		7 ⁻	1 % 4 %	37-122 34-121	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	BRL BRL BRL BRL	mg/kg dry	Phenol-d5 Terphenyl-c	114		7-	4 %	34-121	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	BRL BRL BRL BRL	mg/kg dry	Terphenyl-c						
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	BRL BRL BRL BRL	mg/kg dry	0.0065			87	7 %	54-127	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	BRL BRL BRL BRL	mg/kg dry		0.00053					
1,1,1-Trichloroethane	BRL BRL BRL	mg/kg dry		0.00053					
	BRL BRL	•	0.0005	0.00053	1	8260B	11/9/15 18:22	MW&C	P5K0168
1,1,2,2-Tetrachloroethane	BRL	malka de	0.0065	0.00031	1	8260B	11/9/15 18:22	MW&C	P5K0168
		mg/kg dry	0.0065	0.00044	1	8260B	11/9/15 18:22	MW&C	P5K0168
1,1,2-Trichloroethane		mg/kg dry	0.0065	0.00058	1	8260B	11/9/15 18:22	MW&C	P5K0168
1,1-Dichloroethane	BRL	mg/kg dry	0.0065	0.00018	1	8260B	11/9/15 18:22	MW&C	P5K0168
1,1-Dichloroethylene	BRL	mg/kg dry	0.0065	0.00029	1 .	8260B	11/9/15 18:22	MW&C	P5K0168
1,1-Dichloropropylene	BRL	mg/kg dry	0.0065	0.00036	1	8260B	11/9/15 18:22	MW&C	P5K0168
1,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0065	0.00037	1	8260B	11/9/15 18:22	MW&C	P5K0168
1,2,3-Trichloropropane	BRL	mg/kg dry	0.0065	0.00083	1	8260B	11/9/15 18:22	MW&C	P5K0168
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0065	0.00048	1	8260B	11/9/15 18:22	MW&C	P5K0168
1,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0065	0.00050	1	8260B	11/9/15 18:22	MW&C	P5K0168
1,2-Dibromoethane	BRL	mg/kg dry	0.0065	0.00026	1	8260B	11/9/15 18:22	MW&C	P5K0168
1,2-Dichlorobenzene	BRL	mg/kg dry	0.0065	0.00031	1	8260B	11/9/15 18:22	MW&C	P5K0168
1,2-Dichloroethane	BRL	mg/kg dry	0.0065	0.00039	1	8260B	11/9/15 18:22	MW&C	P5K0168
1,2-Dichloropropane	BRL	mg/kg dry	0.0065	0.00040	1	8260B	11/9/15 18:22	MW&C	P5K0168
1,3,5-Trimethylbenzene	BRL	mg/kg dry	0.0065	0.00049	1	8260B	11/9/15 18:22	MW&C	P5K0168
1,3-Dichlorobenzene	BRL	mg/kg dry	0.0065	0.00043	1	8260B	11/9/15 18:22	MW&C	P5K0168
1,3-Dichloropropane	BRL	mg/kg dry	0.0065	0.00033	1	8260B	11/9/15 18:22	MW&C	P5K0168
1,4-Dichlorobenzene	BRL	mg/kg dry	0.0065	0.00026	1	8260B	11/9/15 18:22	MW&C0	P5K0168
2,2-Dichloropropane	BRL	mg/kg dry	0.0065	0.00031	1	8260B	11/9/15 18:22	MW&C	P5K0168
2-Chlorotoluene	BRL	mg/kg dry	0.0065	0.00034	1	8260B	11/9/15 18:22	MW&C	P5K0168
4-Chlorotoluene	BRL	mg/kg dry	0.0065	0.00039	1	8260B	11/9/15 18:22	MW&C	P5K0168
4-isopropyltoluene	BRL	mg/kg dry	0.0065	0.00031	1	8260B	11/9/15 18:22	MW&C	P5K0168
Acetone	BRL	mg/kg dry	0.065	0.0016	1	8260B	11/9/15 18:22	MW&C	P5K0168
Benzene	BRL	mg/kg dry	0.0039	0.00038	1	8260B	11/9/15 18:22	MW&C	P5K0168
Bromobenzene	BRL	mg/kg dry	0.0065	0.00054	1	8260B	11/9/15 18:22	MW&C	P5K0168
Bromochloromethane	BRL	mg/kg dry	0.0065	0.00036	1	8260B	11/9/15 18:22	MW&C	P5K0168
3romodichloromethane	BRL	mg/kg dry	0.0065	0.00036	1	8260B	11/9/15 18:22	MW&C	P5K0168
Bromoform	BRL	mg/kg dry	0.0065	0.00074	1	8260B	11/9/15 18:22	MW&C	P5K0168
Bromomethane	BRL	mg/kg dry	0.013	0.00080	1	8260B	11/9/15 18:22	MW&C	P5K0168
Carbon Tetrachloride	BRL	mg/kg dry	0.0065	0.00032	1	8260B	11/9/15 18:22	MW&C	P5K0168
Chlorobenzene	BRL	mg/kg dry	0.0065	0.00034	1 .	8260B	11/9/15 18:22	MW&C	P5K0168
Chloroethane	BRL	mg/kg dry	0.013	0.00054	1	8260B	11/9/15 18:22		P5K0168
Chloroform	BRL	mg/kg dry	0.0065	0.00047	1	8260B	11/9/15 18:22	MW&C	P5K0168

12/17/2015

ATC Group Services, LLC Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

rownfield) Client Sample ID: GW-5 (0-1)
Prism Sample ID: 5110135-03
Prism Work Order: 5110135

Time Collected: 11/05/15 10:35 Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis A Date/Time	nalyst	Batch ID
Chloromethane	BRL	mg/kg dry	0.0065	0.00044	1	8260B	11/9/15 18:22	MW&C(P5K0168
cis-1,2-Dichloroethylene	BRL	mg/kg dry	0.0065	0.00028	1	8260B	11/9/15 18:22	MW&C(P5K0168
cis-1,3-Dichloropropylene	BRL	mg/kg dry	0.0065	0.00022	1	8260B	11/9/15 18:22	MW&CC	P5K0168
Dibromochloromethane	BRL	mg/kg dry	0.0065	0.00027	1	8260B	11/9/15 18:22	MW&CC	P5K0168
Dichlorodifluoromethane	BRL CCV	mg/kg dry	0.0065	0.00030	1	8260B	11/9/15 18:22	MW&CC	P5K0168
Ethylbenzene	BRL	mg/kg dry	0.0065	0.00025	1	8260B	11/9/15 18:22	MW&C0	P5K0168
Isopropyl Ether	BRL	mg/kg dry	0.0065	0.00027	1	8260B	11/9/15 18:22	MW&C	P5K0168
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0065	0.00038	1	8260B	11/9/15 18:22	MW&C(P5K0168
m,p-Xylenes	BRL	mg/kg dry	0.013	0.00060	1	8260B	11/9/15 18:22	MW&C0	P5K0168
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.065	0.00059	1	8260B	11/9/15 18:22	MW&C(P5K0168
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.13	0.00059	1	8260B	11/9/15 18:22	MW&C(P5K0168
Methyl Isobutyl Ketone	BRL	mg/kg dry	0.065	0.00055	1	8260B	11/9/15 18:22	MW&C(P5K0168
Methylene Chloride	BRL.	mg/kg dry	0.0065	0.00037	1	8260B	11/9/15 18:22	MW&C(P5K0168
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.013	0.00021	1	8260B	11/9/15 18:22	MW&C(P5K0168
Naphthalene	BRL	mg/kg dry	0.013	0.00021	1	8260B	11/9/15 18:22	MW&C(P5K0168
n-Butylbenzene	BRL	mg/kg dry	0.0065	0.00033	1	8260B	11/9/15 18:22	MW&C(P5K0168
n-Propylbenzene	BRL.	mg/kg dry	0.0065	0.00039	1	8260B	11/9/15 18:22	MW&C(P5K0168
o-Xylene	BRL	mg/kg dry	0.0065	0.00027	1	8260B	11/9/15 18:22	MW&C(P5K0168
sec-Butylbenzene	BRL	mg/kg dry	0.0065	0.00031	1	8260B	11/9/15 18:22	MW&C(P5K0168
Styrene	BRL	mg/kg dry	0.0065	0.00039	1	8260B	11/9/15 18:22	MW&C(P5K0168
tert-Butylbenzene	BRL	mg/kg dry	0.0065	0.00022	1	8260B	11/9/15 18:22	MW&C(P5K0168
Tetrachloroethylene	BRL	mg/kg dry	0.0065	0.00031	1	8260B	11/9/15 18:22	MW&C(P5K0168
Toluene	BRL	mg/kg dry	0.0065	0.00037	1	8260B	11/9/15 18:22	MW&C(P5K0168
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0065	0.00039	1	8260B	11/9/15 18:22	MW&C(P5K0168
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0065	0.00034	1	8260B	11/9/15 18:22	MW&C	P5K0168
Trichloroethylene	BRL	mg/kg dry	0.0065	0.00042	1	8260B	11/9/15 18:22	MW&C0	
Trichlorofluoromethane	BRL	mg/kg dry	0.0065	0.00042	1	8260B	11/9/15 18:22		P5K0168
Vinyl acetate	BRL	mg/kg dry	0.032	0.00089	1	8260B	11/9/15 18:22		P5K016
Vinyl chloride	BRL	mg/kg dry	0.0065	0.00031	1	8260B	11/9/15 18:22	MW&C	
Xylenes, total	BRL	mg/kg dry	0,019	0.0012	1	8260B	11/9/15 18:22		P5K0168
			Surrogate			Reco	VAD/	Control Lir	

Surrogate	Recovery	Control Limits
4-Bromofluorobenzene	87 %	70-130
Dibromofluoromethane	102 %	84-123
Toluene-d8	87 %	76-129

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-6 (0-1) Prism Sample ID: 5110135-04 Prism Work Order: 5110135

Time Collected: 11/05/15 14:15 Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parameters									
% Solids	81.5	% by Weight	0.100	0.100	1	*SM2540 G	11/9/15 14:45	ARC	P5K0169
Semivolatile Organic Compound	is by GC/MS								
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.40	0.063	1	8270D	11/10/15 18:3	5 JM∨	P5K0151
1,2-Dichlorobenzene	BRL	mg/kg dry	0.40	0.061	1	8270D	11/10/15 18:3	35 JMV	P5K0151
1,3-Dichlorobenzene	BRL	mg/kg dry	0.40	0.057	1	8270D	11/10/15 18:3	5 JMV	P5K0151
1,4-Dichlorobenzene	BRL	mg/kg dry	0.40	0.059	1	8270D	11/10/15 18:3	35 JM∨	P5K0151
1-Methylnaphthalene	BRL	mg/kg dry	0.40	0.078	1	8270D	11/10/15 18:3	35 JMV	P5K0151
2,4,6-Trichlorophenol	· BRL	mg/kg dry	0.40	0.076	1	8270D	11/10/15 18:3	5 JMV	P5K0151
2,4-Dichlorophenol	BRL	mg/kg dry	0.40	0.078	1	8270D	11/10/15 18:3	85 JM∨	P5K0151
2,4-Dimethylphenol	BRL	mg/kg dry	0.40	0.062	1	8270D	11/10/15 18:3	85 JMV	P5K0151
2,4-Dinitrophenol	BRL	mg/kg dry	0.40	0.056	1	8270D	11/10/15 18:3	5 JM∨	P5K0151
2,4-Dinitrotoluene	BRL	mg/kg dry	0.40	0.049	1	8270D	11/10/15 18:3	5 JMV	P5K0151
2,6-Dinitrotoluene	BRL	mg/kg dry	0.40	0.054	1	8270D	11/10/15 18:3	5 JMV	P5K0151
2-Chloronaphthalene	BRL	mg/kg dry	0.40	0.059	1	8270D	11/10/15 18:3	5 JMV	P5K0151
2-Chlorophenol	BRL	mg/kg dry	0.40	0.057	1	8270D	11/10/15 18:3	5 JM∨	P5K0151
2-Methylnaphthalene	BRL	mg/kg dry	0.40	0.065	1	8270D	11/10/15 18:3	5 JMV	P5K0151
2-Methylphenol	BRL	mg/kg dry	0.40	0.052	1	8270D	11/10/15 18:3	5 JM∨	P5K0151
2-Nitrophenol	BRL	mg/kg dry	0.40	0.074	1	8270D	11/10/15 18:3	5 JMV	P5K0151
3,3'-Dichlorobenzidine	BRL	mg/kg dry	0.40	0.080	1	8270D	11/10/15 18:3	5 JMV	P5K0151
3/4-Methylphenol	BRL	mg/kg dry	0.40	0.050	1	8270D	11/10/15 18:3	5 JMV	P5K0151
4,6-Dinitro-2-methylphenol	BRL	mg/kg dry	0.40	0.061	1	8270D	11/10/15 18:3	5 JMV	P5K0151
4-Bromophenyl phenyl ether	BRL	mg/kg dry	0.40	0.069	1	8270D	11/10/15 18:3	5 JMV	P5K0151
4-Chloro-3-methylphenol	BRL	mg/kg dry	0.40	0.057	1	8270D	11/10/15 18:3	5 JMV	P5K0151
4-Chloroaniline	BRL	mg/kg dry	0.40	0.049	1	8270D	11/10/15 18:3	5 JMV	P5K0151
4-Chlorophenyl phenyl ether	BRL	mg/kg dry	0.40	0.053	1	8270D	11/10/15 18:3	5 JMV	P5K0151
4-Nitrophenol	BRL	mg/kg dry	0.40	0.062	1	8270D	11/10/15 18:3	5 JMV	P5K0151
Acenaphthene	BRL	mg/kg dry	0.40	0.055	1	8270D	11/10/15 18:3	5 JMV	P5K0151
Acenaphthylene	BRL	mg/kg dry	0.40	0.059	1	8270D	11/10/15 18:3	5 JMV	P5K0151
Anthracene	0.31 J	mg/kg dry	0.40	0.065	1	8270D	11/10/15 18:3	5 JMV	P5K0151
Azobenzene	BRL	mg/kg dry	0.40	0.053	1	8270D	11/10/15 18:3	5 JMV	P5K0151
Senzo(a)anthracene	0.98	mg/kg dry	0.40	0.053	1	8270D	11/10/15 18:3	5 JMV	P5K0151
Benzo(a)pyrene	0.77	mg/kg dry	0.40	0.044	1	8270D	11/10/15 18:3		P5K0151
Benzo(b)fluoranthene	1.0	mg/kg dry	0.40	0.047	1	8270D	11/10/15 18:3	-	P5K0151
Benzo(g,h,i)perylene	0.48	mg/kg dry	0.40	0.044	1	8270D	11/10/15 18:3		P5K0151
Benzo(k)fluoranthene	0.36 J	mg/kg dry	0.40	0.053	1	8270D	11/10/15 18:3		P5K0151
Benzoic Acid	BRL	mg/kg dry	0.40	0.034	1	8270D	11/10/15 18:3		P5K0151
Benzyl alcohol	BRL	mg/kg dry	0.40	0.053	1	8270D	11/10/15 18:3		P5K0151
pis(2-Chloroethoxy)methane	BRL	mg/kg dry	0.40	0.070	1	8270D	11/10/15 18:3		P5K0151
Bis(2-Chloroethyl)ether	BRL	mg/kg dry	0.40	0.057	1	8270D	11/10/15 18:3		P5K0151
Bis(2-chloroisopropyl)ether	BRL	mg/kg dry	0.40	0.069	1	8270D	11/10/15 18:3		P5K0151
Bis(2-Ethylhexyl)phthalate	BRL	mg/kg dry	0.40	0.060		8270D	11/10/15 18:3		P5K0151

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-6 (0-1) Prism Sample ID: 5110135-04 Prism Work Order: 5110135

Time Collected: 11/05/15 14:15 Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL.	Dilution Factor	Method	Analysis A Date/Time	nalyst	Batch ID	
Butyl benzyl phthalate	BRL	mg/kg dry	0.40	0.058	1	8270D	11/10/15 18:35	JM∨	P5K0151	
Chrysene	0.85	mg/kg dry	0.40	0.051	1	8270D	11/10/15 18:35	JMV	P5K0151	
Dibenzo(a,h)anthracene	0.13 J	mg/kg dry	0.40	0.049	1	8270D	11/10/15 18:35	JMV	P5K0151	
Dibenzofuran	BRL	mg/kg dry	0.40	0.062	1	8270D	11/10/15 18:35	JM∨	P5K0151	
Diethyl phthalate	BRL	mg/kg dry	0.40	0.056	1	8270D	11/10/15 18:35	JMV	P5K0151	
Dimethy! phthalate	BRL	mg/kg dry	0.40	0.053	1	8270D	11/10/15 18:35	JMV	P5K0151	
Di-n-butyl phthalate	BRL	mg/kg dry	0.40	0.057	1	8270D	11/10/15 18:35	JMV	P5K0151	
Di-n-octyl phthalate	BRL	mg/kg dry	0.40	0.050	1	8270D	11/10/15 18:35	JMV	P5K0151	
Fluoranthene	1.8	mg/kg dry	0.40	0.052	1	8270D	11/10/15 18:35	JMV	P5K0151	
Fluorene	BRL	mg/kg dry	0.40	0.058	1	8270D	11/10/15 18:35	JMV	P5K0151	
Hexachlorobenzene	BRL	mg/kg ary	0.40	0.064	1	8270D	11/10/15 18:35	JM∨	P5K0151	
Hexachlorobutadiene	BRL	mg/kg dry	0.40	0.073	1	8270D	11/10/15 18:35	JMV	P5K0151	
Hexachlorocyclopentadiene	BRL	mg/kg dry	0.40	0.072	1	8270D	11/10/15 18:35	JMV	P5K0151	
Hexachioroethane	BRL	mg/kg dry	0.40	0.068	1	8270D	11/10/15 18:35	JMV	P5K0151	
Indeno(1,2,3-cd)pyrene	0.49	mg/kg dry	0.40	0.046	1	8270D	11/10/15 18:35	JMV	P5K0151	
Isophorone	BRL	mg/kg dry	0.40	0.055	1	8270D	11/10/15 18:35	JM∨	P5K0151	
Naphthalene	BRL	mg/kg dry	0.40	0.065	1	8270D	11/10/15 18:35	JMV	P5K0151	
Nitrobenzene	BRL	mg/kg dry	0.40	0.057	1	8270D	11/10/15 18:35	5 JMV	P5K0151	
N-Nitroso-di-n-propylamine	BRL	mg/kg dry	0.40	0.064	1	8270D	11/10/15 18:35	j JMV	P5K0151	
N-Nitrosodiphenylamine	BRL	mg/kg dry	0.40	0.062	1	8270D	11/10/15 18:35	5 JMV	P5K0151	
Pentachlorophenol	BRL	mg/kg dry	0.40	0.048	1	8270D	11/10/15 18:3	JMV	P5K0151	
Phenanthrene	1.3	mg/kg dry	0.40	0.053	1	8270D	11/10/15 18:35	JMV	P5K0151	
Phenol	BRL	mg/kg dry	0.40	0.060	1	8270D	11/10/15 18:3	5 JMV	P5K0151	
Pyrene	1.6	mg/kg dry	0.40	0.054	1	8270D	11/10/15 18:35	JMV	P5K0151	
			Surrogate			Reco	very	Control	Limits	
			2,4,6-Tribro	mophenol		7	8 %	39-132	9-132	
				2-Fluorobiphenyl			4 %	44-115		

			Surrogate			Recov	very	Control Limits
			2,4,6-Tribro	mophenol		78	3 %	39-132
			2-Fluorobip	henyl		74 %		44-115
			2-Fluorophe	enol		65	5 %	35-115
			Nitrobenzer	ne-d5		65	5 %	37-122
			Phenol-d5			67	7 %	34-121
			Terphenyl-o	114		79	9 %	54-127
Volatile Organic Compounds b	y GC/MS							
1,1,1,2-Tetrachloroethane	BRL	mg/kg dry	0.0048	0.00040	1	8260B	11/9/15 18:53	MW&C(P5K0168
1,1,1-Trichloroethane	BRL	mg/kg dry	0.0048	0.00023	1	8260B	11/9/15 18:53	MW&C(P5K0168
1,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0048	0.00033	1	8260B	11/9/15 18:53	MW&C(P5K0168
1,1,2-Trichloroethane	BRL	mg/kg dry	0.0048	0.00043	1	8260B	11/9/15 18:53	MW&C(P5K0168
1,1-Dichloroethane	BRL	mg/kg dry	0.0048	0.00013	1	8260B	11/9/15 18:53	MW&C(P5K0168
1,1-Dichloroethylene	BRL	mg/kg dry	0.0048	0.00021	1	8260B	11/9/15 18:53	MW&C(P5K0168
1,1-Dichloropropylene	BRL	mg/kg dry	0.0048	0.00026	1	8260B	11/9/15 18:53	MW&C(P5K0168
1,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0048	0.00027	1	8260B	11/9/15 18:53	MW&C(P5K0168
1,2,3-Trichloropropane	BRL	mg/kg dry	0.0048	0.00061	1	8260B	11/9/15 18:53	MW&C(P5K0168
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0048	0.00036	1	8260B	11/9/15 18:53	MW&C(P5K0168
1,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0048	0.00037	1	8260B	11/9/15 18:53	MW&C(P5K0168

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-6 (0-1) Prism Sample ID: 5110135-04 Prism Work Order: 5110135

Time Collected: 11/05/15 14:15 Time Submitted: 11/06/15 09:50

	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
BRL	mg/kg dry	0.0048	0.00019	1	8260B	11/9/15 18:53	MW&C(P	5K0168
BRL	mg/kg dry	0.0048	0.00023	1	8260B	11/9/15 18:53	MW&C(P	5K0168
BRL	mg/kg dry	0.0048	0.00029	1	8260B	11/9/15 18:53	MW&C(P	5K0168
BRL	mg/kg dry	0.0048	0.00030	1	8260B	11/9/15 18:53	MW&C(P	5K0168
BRL	mg/kg dry	0.0048	0.00036	1	8260B	11/9/15 18:53	MW&C(P	5K0168
BRL	mg/kg dry	0.0048	0.00032	1	8260B	11/9/15 18:53	MW&C(P	5K0168
BRL	mg/kg dry	0.0048	0.00024	1	8260B	11/9/15 18:53	MW&C(P	5K0168
BRL	mg/kg dry	0.0048	0.00019	1	8260B	11/9/15 18:53	MW&C(P	5K0168
BRL	mg/kg dry	0.0048	0.00023	1	8260B	11/9/15 18:53	MW&C(P	5K0168
BRL	mg/kg dry	0.0048	0.00025	1	8260B	11/9/15 18:53	MW&C(P	5K0168
BRL	mg/kg dry	0.0048	0.00029	1	8260B	11/9/15 18:53	MW&C(P	5K0168
BRL	mg/kg dry	0.0048	0.00023	1	8260B	11/9/15 18:53	MW&C(P	5K0168
0.27	mg/kg dry	0.048	0.0012	1	8260B	11/9/15 18:53	MW&C(P	5K0168
BRL		0.0029	0.00028	1	8260B	11/9/15 18:53	MW&C(P	5K0168
BRL			0.00040	1	8260B	11/9/15 18:53	MW&C(P	5K0168
BRL	mg/kg dry			1	8260B	11/9/15 18:53	MW&C(PS	5K0168
BRL	mg/kg dry			1	8260B	11/9/15 18:53	MW&C(P	5K0168
				1	8260B	11/9/15 18:53	MW&C(P	5K0168
				1	8260B	11/9/15 18:53	MW&C(P	5K0168
				1	8260B	11/9/15 18:53	MW&C(P	5K0168
BRL	_		0.00025	1	8260B	11/9/15 18:53	MW&C(P	5K0168
				1	8260B	11/9/15 18:53	MW&CCP	5K0168
BRL		0.0048	0.00035	1	8260B	11/9/15 18:53	MW&C(P	5K0168
BRL		0.0048	0.00032	1	8260B	11/9/15 18:53	MW&C(P	5K0168
				1	8260B	11/9/15 18:53	MW&C(P	5K0168
						11/9/15 18:53	MW&C(P	5K0168
						11/9/15 18:53	MW&C(PS	5K0168
						11/9/15 18:53	MW&C(P	5K0168
						11/9/15 18:53	MW&C(PS	5K0168
							MW&C(PS	
						11/9/15 18:53	MW&C(P	5K0168
							MW&C(P	5K0168
							MW&C(P	
	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	BRL mg/kg dry BRL mg/kg dry	BRL mg/kg dry 0.0048 BRL mg/kg dry 0.0048	BRL mg/kg dry 0.0048 0.00029 BRL mg/kg dry 0.0048 0.00029 BRL mg/kg dry 0.0048 0.00030 BRL mg/kg dry 0.0048 0.00030 BRL mg/kg dry 0.0048 0.00032 BRL mg/kg dry 0.0048 0.00024 BRL mg/kg dry 0.0048 0.00024 BRL mg/kg dry 0.0048 0.00023 BRL mg/kg dry 0.0048 0.00023 BRL mg/kg dry 0.0048 0.00023 BRL mg/kg dry 0.0048 0.00023 BRL mg/kg dry 0.0048 0.00023 BRL mg/kg dry 0.0048 0.00023 BRL mg/kg dry 0.0048 0.00023 BRL mg/kg dry 0.0048 0.00023 BRL mg/kg dry 0.0048 0.00024 BRL mg/kg dry 0.0048 0.00026 BRL mg/kg dry 0.0048 0.00026 BRL mg/kg dry 0.0048 0.00026 BRL mg/kg dry 0.0048 0.00026 BRL mg/kg dry 0.0048 0.00026 BRL mg/kg dry 0.0048 0.00026 BRL mg/kg dry 0.0048 0.00026 BRL mg/kg dry 0.0048 0.00026 BRL mg/kg dry 0.0048 0.00026 BRL mg/kg dry 0.0048 0.00026 BRL mg/kg dry 0.0048 0.00026 BRL mg/kg dry 0.0048 0.00026 BRL mg/kg dry 0.0048 0.00026 BRL mg/kg dry 0.0048 0.00026 BRL mg/kg dry 0.0048 0.00026 BRL mg/kg dry 0.0048 0.00020 BRL mg/kg dry 0.0048 0.00020 BRL mg/kg dry 0.0048 0.00020 BRL mg/kg dry 0.0048 0.00020 BRL mg/kg dry 0.0048 0.00020 BRL mg/kg dry 0.0048 0.00020 BRL mg/kg dry 0.0048 0.00020 BRL mg/kg dry 0.0048 0.00020 BRL mg/kg dry 0.0048 0.00020 BRL mg/kg dry 0.0048 0.00020 BRL mg/kg dry 0.0048 0.00020 BRL mg/kg dry 0.0048 0.00020 BRL mg/kg dry 0.0048 0.00020 BRL mg/kg dry 0.0048 0.00021 BRL mg/kg dry 0.0048 0.00021 BRL mg/kg dry 0.0048 0.00022 BRL mg/kg dry 0.0048 0.00021 BRL mg/kg dry 0.0048 0.00021 BRL mg/kg dry 0.0048 0.00021 BRL mg/kg dry 0.0048 0.00021 BRL mg/kg dry 0.0048 0.00021 BRL mg/kg dry 0.0048 0.00022	BRL mg/kg dry 0.0048 0.00023 1 BRL mg/kg dry 0.0048 0.00029 1 BRL mg/kg dry 0.0048 0.00030 1 BRL mg/kg dry 0.0048 0.00030 1 BRL mg/kg dry 0.0048 0.00036 1 BRL mg/kg dry 0.0048 0.00032 1 BRL mg/kg dry 0.0048 0.00024 1 BRL mg/kg dry 0.0048 0.00024 1 BRL mg/kg dry 0.0048 0.00023 1 BRL mg/kg dry 0.0048 0.00025 1 BRL mg/kg dry 0.0048 0.00025 1 BRL mg/kg dry 0.0048 0.00025 1 BRL mg/kg dry 0.0048 0.00023 1 BRL mg/kg dry 0.0048 0.00023 1 BRL mg/kg dry 0.0048 0.00023 1 BRL mg/kg dry 0.0048 0.00023 1 BRL mg/kg dry 0.0048 0.00023 1 BRL mg/kg dry 0.0048 0.00023 1 BRL mg/kg dry 0.0048 0.00024 1 BRL mg/kg dry 0.0048 0.00026 1 BRL mg/kg dry 0.0048 0.00026 1 BRL mg/kg dry 0.0048 0.00026 1 BRL mg/kg dry 0.0048 0.00026 1 BRL mg/kg dry 0.0048 0.00026 1 BRL mg/kg dry 0.0048 0.00027 1 BRL mg/kg dry 0.0048 0.00025 1 BRL mg/kg dry 0.0048 0.00025 1 BRL mg/kg dry 0.0048 0.00025 1 BRL mg/kg dry 0.0048 0.00025 1 BRL mg/kg dry 0.0048 0.00025 1 BRL mg/kg dry 0.0048 0.00025 1 BRL mg/kg dry 0.0048 0.00025 1 BRL mg/kg dry 0.0048 0.00025 1 BRL mg/kg dry 0.0048 0.00025 1 BRL mg/kg dry 0.0048 0.00025 1 BRL mg/kg dry 0.0048 0.00025 1 BRL mg/kg dry 0.0048 0.00025 1 BRL mg/kg dry 0.0048 0.00020 1 BRL mg/kg dry 0.0048 0.00020 1 BRL mg/kg dry 0.0048 0.00020 1 BRL mg/kg dry 0.0048 0.00020 1 BRL mg/kg dry 0.0048 0.00020 1 BRL mg/kg dry 0.0048 0.00020 1 BRL mg/kg dry 0.0048 0.00020 1 BRL mg/kg dry 0.0048 0.00021 1 BRL mg/kg dry 0.0048 0.00021 1 BRL mg/kg dry 0.0048 0.00021 1 BRL mg/kg dry 0.0048 0.00022 1 BRL mg/kg dry 0.0048 0.00021 1 BRL mg/kg dry 0.0048 0.00021 1 BRL mg/kg dry 0.0048 0.00021 1 BRL mg/kg dry 0.0048 0.00021 1 BRL mg/kg dry 0.0048 0.00021 1 BRL mg/kg dry 0.0048 0.00025 1 BRL mg/kg dry 0.0048 0.00025 1 BRL mg/kg dry 0.0048 0.00025 1 BRL mg/kg dry 0.0048 0.00021 1 BRL mg/kg dry 0.0048 0.00021 1 BRL mg/kg dry 0.0048 0.00021 1 BRL mg/kg dry 0.0048 0.00022 1	BRL mg/kg dry 0.0048 0.00023 1 8260B BRL mg/kg dry 0.0048 0.00029 1 8260B BRL mg/kg dry 0.0048 0.00030 1 8260B BRL mg/kg dry 0.0048 0.00030 1 8260B BRL mg/kg dry 0.0048 0.00030 1 8260B BRL mg/kg dry 0.0048 0.00032 1 8260B BRL mg/kg dry 0.0048 0.00024 1 8260B BRL mg/kg dry 0.0048 0.00024 1 8260B BRL mg/kg dry 0.0048 0.00023 1 8260B BRL mg/kg dry 0.0048 0.00023 1 8260B BRL mg/kg dry 0.0048 0.00025 1 8260B BRL mg/kg dry 0.0048 0.00025 1 8260B BRL mg/kg dry 0.0048 0.00025 1 8260B BRL mg/kg dry 0.0048 0.00023 1 8260B BRL mg/kg dry 0.0048 0.00023 1 8260B BRL mg/kg dry 0.0048 0.00023 1 8260B BRL mg/kg dry 0.0048 0.00023 1 8260B BRL mg/kg dry 0.0048 0.00023 1 8260B BRL mg/kg dry 0.0048 0.00023 1 8260B BRL mg/kg dry 0.0048 0.00026 1 8260B BRL mg/kg dry 0.0048 0.00026 1 8260B BRL mg/kg dry 0.0048 0.00026 1 8260B BRL mg/kg dry 0.0048 0.00027 1 8260B BRL mg/kg dry 0.0048 0.00027 1 8260B BRL mg/kg dry 0.0048 0.00027 1 8260B BRL mg/kg dry 0.0048 0.00027 1 8260B BRL mg/kg dry 0.0048 0.00026 1 8260B BRL mg/kg dry 0.0048 0.00026 1 8260B BRL mg/kg dry 0.0048 0.00026 1 8260B BRL mg/kg dry 0.0048 0.00026 1 8260B BRL mg/kg dry 0.0048 0.00025 1 8260B BRL mg/kg dry 0.0048 0.00025 1 8260B BRL mg/kg dry 0.0048 0.00025 1 8260B BRL mg/kg dry 0.0048 0.00026 1 8260B BRL mg/kg dry 0.0048 0.00026 1 8260B BRL mg/kg dry 0.0048 0.00026 1 8260B BRL mg/kg dry 0.0048 0.00020 1 8260B BRL mg/kg dry 0.0048 0.00020 1 8260B BRL mg/kg dry 0.0048 0.00020 1 8260B BRL mg/kg dry 0.0048 0.00020 1 8260B BRL mg/kg dry 0.0048 0.00020 1 8260B BRL mg/kg dry 0.0048 0.00020 1 8260B BRL mg/kg dry 0.0048 0.00021 1 8260B BRL mg/kg dry 0.0048 0.00021 1 8260B BRL mg/kg dry 0.0048 0.00021 1 8260B BRL mg/kg dry 0.0048 0.00022 1 8260B BRL mg/kg dry 0.0048 0.00020 1 8260B BRL mg/kg dry 0.0048 0.00021 1 8260B BRL mg/kg dry 0.0048 0.00021 1 8260B BRL mg/kg dry 0.0048 0.00021 1 8260B BRL mg/kg dry 0.0048 0.00021 1 8260B BRL mg/kg dry 0.0048 0.00021 1 8260B BRL mg/kg dry 0.0048 0.00021 1 8260B BRL mg/kg dry 0.0048 0.00021 1 8260B BRL mg/kg dry 0.0048 0.00021 1 8260B	BRL mg/kg dry 0.0048 0.00023 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00030 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00030 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00030 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00032 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00032 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00032 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00014 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00013 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00013 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00025 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00023 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00023 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00023 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00023 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00023 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00023 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00023 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00024 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00026 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00026 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00026 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00027 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00027 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00026 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00025 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00025 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00025 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00025 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00025 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00020 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00020 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00020 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00020 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00020 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00020 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00020 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00020 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00020 1 82608 11/9/15 18:53 BRL mg/kg dry 0.0048 0.00020 1 82608 11/9/15 18:53 BRL mg	BRL mg/kg dry 0.0048 0.00023 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00026 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00036 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00036 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00032 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00032 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00024 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00023 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00023 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00025 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00025 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00023 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00023 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00023 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00023 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00024 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00024 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00004 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00004 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.000026 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.000027 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.000027 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.000026 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.000026 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.000026 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.000026 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.000026 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.000026 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.000026 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.000026 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.000026 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.000026 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.000026 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.000026 1 8260B 11/9/15 18:53 MW&CC P BRL mg/kg dry 0.0048 0.00

84-123 76-129

12/17/2015

ATC Group Services, LLC Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Client Sample ID: GW-6 (0-1) Prism Sample ID: 5110135-04 Prism Work Order: 5110135

Time Collected: 11/05/15 14:15 Time Submitted: 11/06/15 09:50

114 %

86 %

Sample Matrix: Solid

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
tert-Butylbenzene	BRL	mg/kg dry	0.0048	0.00016	1	8260B	11/9/15 18:5	3 MW&C	(P5K016
Tetrachloroethylene	BRL	mg/kg dry	0.0048	0.00023	1	8260B	11/9/15 18:5	3 MW&C	P5K016
Toluené	BRL	mg/kg dry	0.0048	0.00028	1	8260B	11/9/15 18:5	3 MW&C	(P5K016
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0048	0.00029	1	8260B	11/9/15 18:5	3 MW&C	(P5K016
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0048	0.00025	1	8260B	11/9/15 18:5	3 MW&C	(P5K016
Trichloroethylene	BRL	mg/kg_dry	0.0048	0.00031	1	8260B	11/9/15 18:5	3 MW&C	(P5K016
Trichlorofluoromethane	BRL	mg/kg dry	0.0048	0.00031	1	8260B	11/9/15 18:5	3 MW&C	(P5K016
Vinyl acetate	BRL	mg/kg dry	0.024	0.00066	1	8260B	11/9/15 18:5	3 MW&C	(P5K016
Vinyl chloride	BRL	mg/kg dry	0.0048	0.00023	1	8260B	11/9/15 18:5	3 MW&C	(P5K016
Xylenes, total	BRL	mg/kg dry	0.014	0.00090	1	8260B	11/9/15 18:5	3 MW&C	(P5K016
			Surrogate			Reco	very	Control L	imits
			4-Bromofluorobenzene			84 %		70-130	

Dibromofluoromethane

Toluene-d8

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-6 (2-4) Prism Sample ID: 5110135-05 Prism Work Order: 5110135 Time Collected: 11/05/15 14:25 Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parameters									
% Solids	77.9	% by Weight	0.100	0.100	1	*SM2540 G	11/9/15 14:46	ARC	P5K0169
Semivolatile Organic Compound	s by GC/MS								
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.42	0.066	1	8270D	11/10/15 16:3	20 JMV	P5K0151
1,2-Dichlorobenzene	BRL	mg/kg dry	0.42	0.064	· 1	8270D	11/10/15 16:2	VMU 02	P5K0151
1,3-Dichlorobenzene	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 16:	20 JMV	P5K0151
1,4-Dichlorobenzene	BRL	mg/kg dry	0.42	0.062	1	8270D	11/10/15 16:	VML 02	P5K015
1-Methylnaphthalene	0.11 J	mg/kg dry	0.42	0.082	1	8270D	11/10/15 16:2	O JMV	P5K0151
2,4,6-Trichlorophenol	BRL	mg/kg dry	0.42	0.079	1	8270D	11/10/15 16:2	20 JMV	P5K0151
2,4-Dichlorophenol	BRL	mg/kg dry	0.42	0.082	1	8270D	11/10/15 16:2	20 JMV	P5K0151
2,4-Dimethylphenol	BRL	mg/kg dry	0.42	0.065	1	8270D	11/10/15 16:2	20 J M V	P5K0151
2,4-Dinitrophenol	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 16:2	20 JMV	P5K0151
2,4-Dinitrotoluene	BRL	mg/kg dry	0.42	0.051	1	8270D	11/10/15 16:2	20 JMV	P5K0151
2,6-Dinitrotoluene	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 16:2	20 JMV	P5K0151
2-Chloronaphthalene	BRL	mg/kg dry	0.42	0.061	1	8270D	11/10/15 16:2	20 JMV	P5K0151
2-Chiorophenoi	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 16:2	0 JMV	P5K0151
2-Methylnaphthalene	0.14 J	mg/kg dry	0.42	0.068	1	8270D	11/10/15 16:2	0 JMV	P5K0151
2-Methylphenol	BRL	mg/kg dry	0.42	0.054	1	8270D	11/10/15 16:2	20 JMV	P5K0151
2-Nitrophenol	BRL	mg/kg dry	0.42	0.077	1	8270D	11/10/15 16:2	20 JMV	P5K0151
3,3'-Dichlorobenzidine	BRL	mg/kg dry	0.42	0.084	1	8270D	11/10/15 16:2	20 JMV	P5K0151
3/4-Methylphenol	BRL	mg/kg dry	0.42	0.052	1	8270D	11/10/15 16:2	VML 02	P5K0151
4,6-Dinitro-2-methylphenol	BRL	mg/kg dry	0.42	0.064	1	8270D	11/10/15 16:2	20 JMV	P5K0151
4-Bromophenyl phenyl ether	BRL	mg/kg dry	0.42	0.073	1	8270D	11/10/15 16:2	20 JMV	P5K0151
4-Chioro-3-methylphenol	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 16:2	20 JMV	P5K0151
4-Chloroaniline	BRL	mg/kg dry	0.42	0.051	1	8270D	11/10/15 16:2	20 JMV	P5K0151
4-Chlorophenyl phenyl ether	BRL	mg/kg dry	0.42	0.055	1	8270D	11/10/15 16:2	20 JMV	P5K0151
4-Nitrophenol	BRL	mg/kg dry	0.42	0.065	1	8270D	11/10/15 16:2	20 JMV	P5K0151
Acenaphthene	0.19 J	mg/kg dry	0.42	0.058	1	8270D	11/10/15 16:2	O JMV	P5K0151
Acenaphthylene	BRL	mg/kg dry	0.42	0.061	1	8270D	11/10/15 16:3	20 JMV	P5K0151
Anthracene	0.61	mg/kg dry	0.42	0.068	1	8270D	11/10/15 16:2	O JMV	P5K0151
Azobenzene	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 16:2	20 JMV	P5K0151
Benzo(a)anthracene	1.1	mg/kg dry	0.42	0.055	1	8270D	11/10/15 16:2	O JMV	P5K0151
Benzo(a)pyrene	0.85	mg/kg dry	0.42	0.046	1	8270D	11/10/15 16:2	0 JMV	P5K0151
Benzo(b)fluoranthene	1.1	mg/kg dry	0.42	0.049	1	8270D	11/10/15 16:2	o JMV	P5K0151
Benzo(g,h,i)perylene	0.46	mg/kg dry	0.42	0.046	1	8270D	11/10/15 16:2		P5K0151
						8270D	11/10/15 16:2		P5K0151
Benzo(k)fluoranthene	0.43	mg/kg dry	0.42	0.056 0.036	1 1	8270D 8270D	11/10/15 16:2		P5K0151
Benzoic Acid	BRL BRL	mg/kg dry mg/kg dry	0.42	0.056	1	8270D	11/10/15 16:3		P5K0151
Benzyl alcohol	BRL	mg/kg dry mg/kg dry	0.42	0.036	1	8270D	11/10/15 16:2		P5K0151
ois(2-Chloroethoxy)methane		mg/kg dry	0.42		1	8270D	11/10/15 16:2		P5K0151
Bis(2-Chloroethyl)ether	BRL	mg/kg dry	0.42	0.060		8270D	11/10/15 16:2		P5K0151
Bis(2-chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate	BRL BRL	mg/kg dry mg/kg dry	0.42 0.42	0.072 0.063	1 1	8270D 8270D	11/10/15 16:2		P5K0151

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

12/17/2015

ATC Group Services, LLC Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-6 (2-4) Prism Sample ID: 5110135-05 Prism Work Order: 5110135 Time Collected: 11/05/15 14:25

Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Butyl benzyl phthalate	BRL	mg/kg dry	0.42	0.060	1,	8270D	11/10/15 16:	20 JMV	P5K0151
Chrysene	1.0	mg/kg dry	0.42	0.053	1	8270D	11/10/15 16:2	O JMV	P5K0151
Dibenzo(a,h)anthracene	0.13 J	mg/kg dry	0.42	0.052	1	8270D	11/10/15 16:	O JMTV	P5K0151
Pibenzofuran	0.18 J	mg/kg dry	0.42	0.064	1	8270D	11/10/15 16:	O JMV	P5K015
Diethyl phthalate	BRL	mg/kg dry	0.42	0.058	1	8270D	11/10/15 16:	20 JMV	P5K015
imethyl phthalate	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 16:	20 JMV	P5K015
Di-n-butyl phthalate	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 16:	20 JMV	P5K015
Di-n-octyl phthalate	BRL	mg/kg dry	0.42	0.052	1	8270D	11/10/15 16:	20 JMV	P5K015
luoranthene	2.2	mg/kg dry	0.42	0.054	1	8270D	11/10/15 16:	20 JMV	P6K015
iluorene	0.22 J	mg/kg dry	0.42	0.061	1	8270D	11/10/15 16:	20 JMV	P5K015
lexachlorobenzene	BRL	mg/kg dry	0.42	0.067	1	8270D	11/10/15 16:	20 JMV	P5K015
lexachlorobutadiene	BRL	mg/kg dry	0.42	0.076	1	8270D	11/10/15 16:	20 JMV	P5K015
lexachlorocyclopentadiene	BRL.	mg/kg dry	0.42	0.076	1	8270D	11/10/15 16:	20 JMV	P5K015
lexachloroethane	BRL	mg/kg dry	0.42	0.071	1	8270D	11/10/15 16:	20 JMV	P5K015
ndeno(1,2,3-cd)pyrene	0.48	mg/kg dry	0.42	0.049	1	8270D	11/10/15 16:	20 JMV	P5K015
sophorone	BRL	mg/kg dry	0.42	0.057	1	8270D	11/10/15 16:	20 JM∨	P5K015
laphthalene	0.15 J	mg/kg dry	0.42	0.068	1	8270D	11/10/15 16:	20 JMV	P5K015
litrobenzene	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 16:	20 JM∨	P5K015
I-Nitroso-di-n-propylamine	BRL	mg/kg dry	0.42	0.067	1	8270D	11/10/15 16		P5K015
N-Nitrosodiphenylamine	BRL	mg/kg dry	0.42	0.064	1	8270D	11/10/15 16	20 JMV	P5K015
Pentachlorophenoi	BRL	mg/kg dry	0.42	0.050	1	8270D	11/10/15 16	20 JMV	P5K015
Phenanthrene	2.1	mg/kg dry	0.42	0.055	1	8270D	11/10/15 16:	20 JMV	P5K015
Phenol	BRL	mg/kg dry	0.42	0.063	1	8270D	11/10/15 16	20 JMV	P5K015
Pyrene	1.8	mg/kg dry	0.42	0.056	1	8270D	11/10/15 16:	20 JMV	P5K015
			Surrogate			Reco	very	Control	Limits
			2,4,6-Tribro	mophenol		7	3 %	39-132)
			2-Fluorobipi	henyl		7	4 %	44-115	i
			2-Fluorophe	enol		6	6 %	35-115	i
			Nitrobenzer	ne-d5		6	66 %	37-122	?
			Phenol-d5			6	i9 %	34-12	1
			Terphenyl-o	114		7	7 %	54-127	
Volatile Organic Compounds	by GC/MS								
1,1,1,2-Tetrachloroethane	BRL	mg/kg dry	0.0062	0.00051		8260B	11/9/15 19:2		C(P5K016
1,1,1-Trichloroethane	BRL	mg/kg dry	0.0062	0.00030) 1	8260B	11/9/15 19:2		C(P5K016
1,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0062	0.00042	2 1	8260B	11/9/15 19:		C(P5K016
1,1,2-Trichloroethane	BRL	mg/kg dry	0.0062	0.00055	5 1	8260B	11/9/15 19:		C(P5K016
1,1-Dichloroethane	BRL	mg/kg dry	0.0062	0.00017	7 1	8260B	11/9/15 19:		C(P5K016
1,1-Dichloroethylene	BRL	mg/kg dry	0.0062	0.00027	7 1	8260B	11/9/15 19:	24 MW8	C(P5K01
1,1-Dichloropropylene	BRL	mg/kg dry	0.0062	0.00034	\$ 1	8260B	11/9/15 19:	24 MW8	C(P5K01
1,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0062	0.00035	5 1	8260B	11/9/15 19:	24 MW8	C(P5K01
1,2,3-Trichloropropane	BRL	mg/kg dry	0.0062	0.00079	9 1	8260B	11/9/15 19:	24 MW8	C(P5K01
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0062	0.00046	3 1	8260B	11/9/15 19:	24 MW8	CC P5K01

12/17/2015

ATC Group Services, LLC Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid -

Client Sample ID: GW-6 (2-4)
Prism Sample ID: 5110135-05
Prism Work Order: 5110135
Time Collected: 11/05/15 14:25
Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
1,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0062	0.00047	1	8260B	11/9/15 19:24	MW&C(P	′5K0168
1,2-Dibromoethane	BRL	mg/kg dry	0.0062	0.00025	1	8260B	11/9/15 19:24	MW&C(P	5K0168
1,2-Dichlorobenzene	BRL	mg/kg dry	0.0062	0.00029	1	8260B	11/9/15 19:24	MW&C(P	5K0168
1,2-Dichloroethane	BRL	mg/kg dry	0.0062	0.00037	1	8260B	11/9/15 19:24	MW&C(P	'5K0168
1,2-Dichloropropane	BRL	mg/kg dry	0.0062	0.00038	1	8260B	11/9/15 19:24	MW&C(P	'5K0168
1,3,5-Trimethylbenzene	BRL	mg/kg dry	0.0062	0.00047	1	8260B	11/9/15 19:24	MW&C(P	5K0168
1,3-Dichlorobenzene	BRL	mg/kg dry	0.0062	0.00041	1	8260B	11/9/15 19:24	MW&C(P	5K0168
1,3-Dichloropropane	BRL	mg/kg dry	0.0062	0.00031	1	8260B	11/9/15 19:24	MW&C(P	'5K0168
1,4-Dichlorobenzene	BRL	mg/kg dry	0.0062	0.00024	1	8260B	11/9/15 19:24	MW&C(P	5K0168
2,2-Dichloropropane	BRL	mg/kg dry	0.0062	0.00030	1	8260B	11/9/15 19:24	MW&C(P	
2-Chlorotoluene	BRL	mg/kg dry	0.0062	0.00032	1	8260B	11/9/15 19:24	MW&C(P	'5K0168
4-Chlorotoluene	BRL	mg/kg dry	0.0062	0.00037	1	8260B	11/9/15 19:24	MW&C(P	
1-isopropyltoluene	BRL	mg/kg dry	0.0062	0.00030	1	8260B	11/9/15 19:24	MW&C(P	'5K0168
Acetone	0.079	mg/kg dry	0.062	0.0015	1	8260B	11/9/15 19:24	MW&C(P	5K0168
Зепzепе	BRL	mg/kg dry	0.0037	0.00036	1	82608	11/9/15 19:24	MW&C(P	5K0168
3romobenzene	BRL	mg/kg dry	0.0062	0.00052	1	8260B	11/9/15 19:24	MW&C(P	5K0168
3romochloromethane	BRL	mg/kg dry	0.0062	0.00034	1	8260B	11/9/15 19:24	MW&C(P	5K0168
3romodichloromethane	BRL	mg/kg dry	0.0062	0.00035	1	8260B	11/9/15 19:24	MW&C(P	5K0168
3romoform	BRL	mg/kg dry	0.0062	0.00071	1	8260B	11/9/15 19:24	MW&C(P	5K0168
3romomethane	BRL	mg/kg dry	0.012	0.00077	1	8260B	11/9/15 19:24	MW&C(P	5K0168
Carbon Tetrachloride	BRL	mg/kg dry	0.0062	0.00031	1	8260B	11/9/15 19:24	MW&C(P	5K0168
Chlorobenzene	BRL	mg/kg dry	0.0062	0.00033	1	8260B	11/9/15 19:24	MW&C(P	5K0168
Chloroethane	BRL	mg/kg dry	0.012	0.00052	1	8260B	11/9/15 19:24	MW&C(P	
Chloroform	BRL	mg/kg dry	0.0062	0.00045	1	8260B	11/9/15 19:24	MW&C(P	5K0168
Chloromethane	BRL	mg/kg dry	0.0062	0.00042	1	8260B	11/9/15 19:24	MW&C(P	5K0168
sis-1,2-Dichloroethylene	BRL	mg/kg dry	0.0062	0.00026	1	8260B	11/9/15 19:24	MW&C(P	
cis-1,3-Dichloropropylene	BRL	mg/kg dry	0.0062	0.00021	1	8260B	.11/9/15 19:24	MW&C(P	'5K0168
Dibromochloromethane	BRL	mg/kg dry	0.0062	0.00026	1	8260B	11/9/15 19:24	MW&C(P	'5K0168
Dichlorodifluoromethane	BRL CCV	mg/kg dry	0.0062	0.00028	1	8260B	11/9/15 19:24	MW&C(P	5K0168
Ethylbenzene	BRL	mg/kg dry	0.0062	0.00024	1	8260B	11/9/15 19:24	MW&C(P	'5K0168
sopropyl Ether	BRL	mg/kg dry	0.0062	0.00025	1	8260B	11/9/15 19:24	MW&C(P	'5K0168
sopropylbenzene (Cumene)	BRL	mg/kg dry	0.0062	0.00037	1	8260B	11/9/15 19:24	MW&C(P	5K0168
n,p-Xylenes	BRL	mg/kg dry	0.012	0.00057	1	8260B	11/9/15 19:24	MW&C(P	'5K0168
Vethyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.062	0.00056	1	8260B	11/9/15 19:24	MW&C(P	5K0168
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.12	0.00056	1	8260B	11/9/15 19:24	MW&C(P	5K0168
Methyl Isobutyl Ketone	BRL	mg/kg dry	0.062	0.00053	1	8260B	11/9/15 19:24	MW&C(P	5K0168
Methylene Chloride	BRL	mg/kg dry	0.0062	0.00035	1	8260B	11/9/15 19:24	MW&C(P	5K0168
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.012	0.00020	1	8260B	11/9/15 19:24	MW&C(P	
Naphthalene	BRL	mg/kg dry	0.012	0.00020	1	8260B	11/9/15 19:24	MW&C(P	
n-Butylbenzene	BRL	mg/kg dry	0.0062	0.00032	1	8260B	11/9/15 19:24	MW&C(P	5K0168ئ
n-Propylbenzene	BRL	mg/kg dry	0.0062	0.00037	1	8260B	11/9/15 19:24	MW&C(P	5K0168
-Xylene	BRL	mg/kg dry	0.0062	0.00025	1	8260B	11/9/15 19:24	MW&C(P	
sec-Butylbenzene	BRL	mg/kg dry	0.0062	0.00030	1	8260B	11/9/15 19:24	MW&C(P	25K0168

12/17/2015

ATC Group Services, LLC Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Client Sample ID: GW-6 (2-4) Prism Sample ID: 5110135-05

Prism Work Order: 5110135 Time Collected: 11/05/15 14:25 Time Submitted: 11/06/15 09:50

Sample Matrix: Solid

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst Batch ID
Styrene	BRL	mg/kg dry	0.0062	0.00037	1	8260B	11/9/15 19:24	MW&C(P5K0168
tert-Butylbenzene	BRL	mg/kg dry	0.0062	0.00021	1	8260B	11/9/15 19:24	MW&C(P5K0168
Tetrachloroethylene	BRL	mg/kg dry	0.0062	0.00030	1	8260B	11/9/15 19:24	MW&C(P5K0168
Toluene	BRL	mg/kg dry	0.0062	0.00036	1	8260B	11/9/15 19:24	MW&C(P5K0168
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0062	0.00037	1	8260B	11/9/15 19:24	MW&C(P5K0168
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0062	0.00033	1	8260B	11/9/15 19:24	MW&C(P5K0168
Trichloroethylene	BRL	mg/kg dry	0.0062	0.00040	1	8260B	11/9/15 19:24	MW&C(P5K0168
Trichlorofluoromethane	BRL	mg/kg dry	0.0062	0.00040	1	8260B	11/9/15 19:24	MW&C(P5K0168
Vinyl acetate	BRL	mg/kg dry	0.031	0.00085	1	8260B	11/9/15 19:24	MW&C(P5K0168
Vinyl chloride	BRL	mg/kg dry	0.0062	0.00030	1	8260B	11/9/15 19:24	MW&C(P5K0168
Xylenes, total	BRL	mg/kg dry	0.019	0.0012	1	8260B	11/9/15 19:24	MW&C(P5K0168

ATC Group Services, LLC

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-7 (0-1)

Prism Sample ID: 5110135-06 Prism Work Order: 5110135

Time Collected: 11/05/15 11:00 Time Submitted: 11/06/15 09:50

						Submitted: 1			
Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parameters	3					,			
% Solids	79.6	% by Weight	0.100	0.100	1	*SM2540 G	11/9/15 14:45	ARC	P5K0169
Polychlorinated Biphenyls (PC	Bs) by GC/ECD								
Aroclor 1016	BRL	mg/kg dry	0.063	0.0059	1	8082A	11/13/15 4:44	4 JMC	P5K0219
Aroclor 1221	BRL	mg/kg dry	0.13	0.050	1	8082A	11/13/15 4:44	1 JMC	P5K0219
Aroclor 1232	BRL	mg/kg dry	0.13	0.016	1	8082A	11/13/15 4:44	# JMC	P5K0219
Aroclor 1242	BRL	mg/kg dry	0.063	0.017	1	8082A	11/13/15 4:44	JMC	P5K0219
Aroclor 1248	BRL	mg/kg dry	0.063	0.013	1	8082A	11/13/15 4:44	JMC	P5K0219
Aroclor 1254	BRL	mg/kg dry	0.063	0.016	1	8082A	11/13/15 4:4-	JMC	P5K0219
Aroclor 1260	BRL	mg/kg dry	0.063	0.0087	1	8082A	11/13/15 4:44	JMC	P5K0219
			Surrogate			Recov	ery	Control L	_imits
			Tetrachloro-	m-xvlene		63	%	36-182	
			Decachlorol	•		82	%	34-182	
Semivolatile Organic Compour	nds by GC/MS			, -					
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.41	0.065	1	8270D	11/10/15 13:4	1 JMV	P5K0151
1,2-Dichlorobenzene	BRL	mg/kg dry	0.41	0.063	1	8270D	11/10/15 13:4	1 JMV	P5K0151
1,3-Dichlorobenzene	BRL	mg/kg dry	0.41	0.058	1	8270D	11/10/15 13:4	1 JMV	P5K0151
1,4-Dichlorobenzene	BRL	mg/kg dry	0.41	0.060	1	8270D	11/10/15 13:4	1 JM∨	P5K0151
1-Methylnaphthalene	BRL	mg/kg dry	0.41	0.080	1	8270D	11/10/15 13:4	1 JMV	P5K0151
2,4,6-Trichlorophenol	BRL	mg/kg dry	0.41	0.078	1	8270D	11/10/15 13:4		P5K0151
2,4-Dichlorophenol	BRL	mg/kg dry	0.41	0.080	1	8270D	11/10/15 13:4		P5K0151
2,4-Dimethylphenol	BRL	mg/kg dry	0.41	0.063	1	8270D	11/10/15 13:4		P5K0151
2,4-Dinitrophenol	BRL	mg/kg dry	0.41	0.058	1	8270D	11/10/15 13:4		P5K0151
2,4-Dinitrotoluene	BRL	mg/kg dry	0.41	0.050	1	8270D	11/10/15 13:4		P5K0151
2,6-Dinitrotoluene	BRL	mg/kg dry	0.41	0.055	1	8270D	11/10/15 13:4		P5K0151
2-Chloronaphthalene	BRL	mg/kg dry	0.41	0.060	1	8270D	11/10/15 13:4		P5K0151
2-Chlorophenol	BRL	mg/kg dry	0.41	0.059	1	8270D	11/10/15 13:4		P5K0151
2-Methylnaphthalene	BRL	mg/kg dry	0.41	0.066	1	8270D	11/10/15 13:4		P5K0151
2-Methylphenol	BRL	mg/kg dry	0.41	0.053	1	8270D	11/10/15 13:4		P5K0151
• •	BRL				1	8270D	11/10/15 13:4		P5K0151
2-Nitrophenol		mg/kg dry	0.41	0.075			. 11/10/15 13:4		P5K0151
3,3'-Dichlorobenzidine	BRL	mg/kg dry	0.41	0.082	1	8270D	11/10/15 13:4		P5K0151
3/4-Methylphenol	BRL	mg/kg dry	0.41	0.051	1	8270D	11/10/15 13:4		P5K0151
4,6-Dinitro-2-methylphenol	BRL	mg/kg dry	0.41	0.062	1	8270D			P5K0151
4-Bromophenyl phenyl ether	BRL	mg/kg dry	0.41	0.071	1	8270D	11/10/15 13:4		P5K0151
4-Chloro-3-methylphenol	BRL	mg/kg dry	0.41	0.058	1	8270D	11/10/15 13:4		P5K0151
4-Chloroaniline	BRL	mg/kg dry	0.41	0.050	1	8270D	11/10/15 13:4		P5K0151
4-Chlorophenyl phenyl ether	BRL	mg/kg dry	0.41	0.054	1	8270D	11/10/15 13:4		P5K0151
4-Nitrophenol	BRL	mg/kg dry	0.41	0.064	1	8270D	11/10/15 13:4		P5K0151
Acenaphthene	BRL	mg/kg dry	0.41	0.056	1	8270D	11/10/15 13:4		P5K0151
Acenaphthylene	BRL	mg/kg dry	0.41	0.060	1	8270D	11/10/15 13:4		P5K0151
Anthracene	BRL.	mg/kg dry	0.41	0.067	1	8270D	11/10/15 13:4		P5K0151
Azobenzene	BRL	mg/kg dry	0.41	0.055	1	8270D	11/10/15 13:4	1 JIVIV	LOVO 191

12/17/2015

ATC Group Services, LLC Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Client Sample ID: GW-7 (0-1)
Prism Sample ID: 5110135-06

Prism Work Order: 5110135

Sample Matrix: Solid Time Collected: 11/05/15 11:00 Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analyst Date/Time	Batch ID
Benzo(a)anthracene	BRL	mg/kg dry	0.41	0.054	1	8270D	11/10/15 13:41 JMV	P5K0151
Benzo(a)pyrene	BRL	mg/kg dry	0.41	0.045	1	8270D	11/10/15 13:41 JMV	P5K0151
Benzo(b)fluoranthene	BRL	mg/kg dry	0.41	0.048	1	8270D	11/10/15 13:41 JMV	P5K0151
Benzo(g,h,i)perylene	BRL	mg/kg dry	0.41	0.045	1	8270D	11/10/15 13:41 JMV	P5K0151
Benzo(k)fluoranthene	BRL	mg/kg dry	0.41	0.054	1	8270D	11/10/15 13:41 JMV	P5K0151
Benzoic Acid	BRL	mg/kg dry	0.41	0.035	1	8270D	11/10/15 13:41 JMV	P5K0151
Benzyl alcohol	BRL	mg/kg dry	0.41	0.054	1	8270D	11/10/15 13:41 JMV	P5K0151
pis(2-Chloroethoxy)methane	BRL	mg/kg dry	0.41	0.072	1	8270D	11/10/15 13:41 JMV	P5K0151
3is(2-Chloroethyl)ether	BRL	mg/kg dry	0.41	0.058	1	8270D	11/10/15 13:41 JMV	P5K0151
Bis(2-chloroisopropyl)ether	BRL	mg/kg dry	0.41	0.071	1	8270D	11/10/15 13:41 JMV	P5K0151
Bis(2-Ethylhexyl)phthalate	BRL	mg/kg dry	0.41	0.061	1	8270D	11/10/15 13:41 JMV	P5K0151
Butyl benzyl phthalate	BRL	mg/kg dry	0.41	0.059	1	8270D	11/10/15 13:41 JMV	P5K0151
Chrysene	BRL	mg/kg dry	0.41	0.052	1	8270D	11/10/15 13:41 JMV	P5K0151
Dibenzo(a,h)anthracene	BRL	mg/kg dry	0.41	0.050	1	8270D	11/10/15 13:41 JMV	P5K0151
Dibenzofuran	BRL	mg/kg dry	0.41	0.063	1	8270D	11/10/15 13:41 JMV	P5K0151
Diethyl phthalate	BRL	mg/kg dry	0.41	0.057	1	8270D	11/10/15 13:41 JMV	P5K0151
Dimethyl phthalate	BRL	mg/kg dry	0.41	0.055	1	8270D	11/10/15 13:41 JMV	P5K0151
Di-n-butyl phthalate	BRL	mg/kg dry	0.41	0.059	1	8270D	11/10/15 13:41 JMV	P5K0151
Di-n-octyl phthalate	BRL	mg/kg dry	0.41	0.051	1	8270D	11/10/15 13:41 JMV	P5K0151
Fluoranthene	BRL	mg/kg dry	0.41	0.053	1	8270D	11/10/15 13:41 JMV	P5K0151
Fluorene	BRL	mg/kg dry	0.41	0.059	1	8270D	11/10/15 13:41 JMV	P5K0151
Hexachlorobenzene	BRL	mg/kg dry	0.41	0.066	1	8270D	11/10/15 13:41 JMV	P5K0151
Hexachlorobutadiene	BRL	mg/kg dry	0.41	0.074	1	8270D	11/10/15 13:41 JMV	P5K0151
Hexachlorocyclopentadiene	BRL	mg/kg dry	0.41	0.074	1	8270D	11/10/15 13:41 JMV	P5K0151
Hexachloroethane	BRL	mg/kg dry	0.41	0.069	1	8270D	11/10/15 13:41 JMV	P5K0151
Indeno(1,2,3-cd)pyrene	BRL	mg/kg dry	0.41	0.047	1	8270D	11/10/15 13:41 JMV	P5K0151
Isophorone	BRL	mg/kg dry	0,41	0.056	1	8270D	11/10/15 13:41 JMV	P5K0151
Naphthalene	BRL	mg/kg dry	0,41	0.067	1	8270D	11/10/15 13:41 JMV	P5K0151
Nitrobenzene	BRL	mg/kg dry	0.41	0.059	1	8270D	11/10/15 13:41 JMV	P5K0151
N-Nitroso-di-n-propylamine	BRL	mg/kg dry	0.41	0.065	1	8270D	11/10/15 13:41 JMV	P5K0151
N-Nitrosodiphenylamine	BRL	mg/kg dry	0.41	0.063	1	8270D	11/10/15 13:41 JMV	P5K0151
Pentachlorophenol	BRL	mg/kg dry	0.41	0.049	1	8270D	11/10/15 13:41 JMV	P5K0151
Phenanthrene	BRL	mg/kg dry	0.41	0.054	1	8270D	11/10/15 13:41 JMV	P5K0151
Phenol	BRL	mg/kg dry	0.41	0.061	1	8270D	11/10/15 13:41 JMV	P5K0151
Pyrene	BRL	mg/kg dry	0.41	0,055	1	8270D	11/10/15 13:41 JMV	P5K0151

Surrogate	Recovery	Control Limits
2,4,6-Tribromophenol	76 %	39-132
2-Fluorobiphenyl	74 %	44-115
2-Fluorophenol	70 %	<i>35-115</i>
Nitrobenzene-d5	67 %	37-122
Phenol-d5	69 %	34-121
Terphenyl-d14	75 %	54-127

Total Metals

ATC Group Services, LLC Attn: Christine Schaefer 7606 Whitehall Executive Center Drive, Suite Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-7 (0-1) Prism Sample ID: 5110135-06 Prism Work Order: 5110135 Time Collected: 11/05/15 11:00 Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analy Date/Time	st Batch ID
Aluminum	38000	mg/kg dry	640	86	200	*6010C	11/12/15 18:03 BG	M P5K0149
Mercury	0.057	mg/kg dry	0.026	0.0017	1	*7471B	11/9/15 13:16 JA	B P5K0150
Antimony	9.4	mg/kg dry	0.32	0.050	1	*6010C	11/10/15 1:20 BG	M P5K0149
Arsenic	29	mg/kg dry	0.32	0.071	1	*6010C	11/10/15 1:20 BC	M P5K0149
Barium	96	mg/kg dry	0.64	0.34	1	*6010C	11/10/15 1:20 BG	M P5K0149
Beryllium	31	mg/kg dry	0.32	0.011	1	*6010C	11/10/15 1:20 BG	M P5K0149
Cadmium	27	mg/kg dry	0.32	0.0068	1	*6010C	11/10/15 1:20 BC	M P5K0149
Calcium	930	mg/kg dry	13	0.83	1	*6010C	11/10/15 1:20 BG	M P5K0149
Chromium	55	mg/kg dry	0.32	0.043	1	*6010C	11/10/15 1:20 BG	M P5K0149
Cobalt	58	mg/kg dry	0.32	0.0099	1	*6010C	11/10/15 1:20 BG	M P5K0149
Copper	85	mg/kg dry	0.64	0.11	1	*6010C	11/10/15 1:20 BG	
Iron	54000	mg/kg dry	1300	370	200	*6010C	11/12/15 18:03 BG	
Lead	37	mg/kg dry	0.32	0.034	1	*6010C	11/10/15 1:20 BG	
Magnesium	1300	mg/kg dry	640	69	200	*6010C	11/12/15 18:03 BG	
Manganese	500			12	200	*6010C	11/12/15 18:03 BG	
Manganese Nickel		mg/kg dry	64				11/10/15 1:20 BG	
	42	mg/kg dry	0.64	0.060	1	*6010C		
Potassium	1700	mg/kg dry	16	1.6	1	*6010C		
Selenium 	21	mg/kg dry	0.64	0.046	1	*6010C	11/10/15 1:20 BG	
Silver	11	mg/kg dry	0.32	0.0052	1	*6010C	11/10/15 1:20 BG	
Sodium	670	mg/kg dry	19	0.56	1	*6010C	11/10/15 1:20 BG	
Thallium	26	mg/kg dry	0.64	0.046	1	*6010C	11/10/15 1:20 BC	
Vanadium	150	mg/kg dry	0.32	0.011	1	*6010C	11/10/15 1:20 BG	
Zinc	91	mg/kg dry	3.2	0.039	1	*6010C	11/10/15 1:20 BG	M P5K0149
Volatile Organic Compounds	by GC/MS							
1,1,1,2-Tetrachloroethane	BRL	mg/kg dry	0.0044	0.00036	1	8260B		V&C(P5K0168
1,1,1-Trichloroethane	BRL	mg/kg dry	0.0044	0.00021	1	8260B		V&C(P5K0168
1,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0044	0.00030	1	8260B		V&C(P5K0168
1,1,2-Trichloroethane	BRL	mg/kg dry	0.0044	0.00039	1	8260B		V&C(P5K0168
1,1-Dichloroethane	BRL	mg/kg dry	0.0044	0.00012	1	8260B		V&C(P5K0168
1,1-Dichloroethylene	BRL	mg/kg dry	0.0044	0.00019	1	8260B		V&C(P5K0168
1,1-Dichloropropylene	BRL	mg/kg dry	0.0044	0.00024	1	8260B		V&C(P5K0168
1,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0044	0.00025	1	8260B		V&C(P5K0168
1,2,3-Trichloropropane	BRL	mg/kg dry	0.0044	0.00056	1	8260B		V&C(P5K0168
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0044	0.00033	1	8260B		V&C(P5K0168
1,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0044	0.00034	1	8260B		V&C(P5K0168
1,2-Dibromoethane	BRL	mg/kg dry	0.0044	0.00018	1	8260B		V&C(P5K0168
1,2-Dichlorobenzene	BRL	mg/kg dry	0.0044	0.00021	1	8260B		V&C(P5K0168
1,2-Dichloroethane	BRL	mg/kg dry	0.0044	0.00026	1 ·	8260B		V&C(P5K0168
1,2-Dichloropropane	BRL	mg/kg dry	0.0044	0.00027	1	8260B		V&C(P5K0168
1,3,5-Trimethylbenzene	BRL	mg/kg dry	0.0044	0.00033	1	8260B		V&C(P5K0168
1,3-Dichlorobenzene	BRL	mg/kg dry	0.0044	0.00029	1	8260B		V&C(P5K0168
1,3-Dichloropropane	BRL	mg/kg dry	0.0044	0.00022	1	8260B	11/9/15 19:55 M \	V&C(P5K0168

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

ATC Group Services, LLC
Attn: Christine Schaefer
7606 Whitehall Executive Center F

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-7 (0-1) Prism Sample ID: 5110135-06 Prism Work Order: 5110135 Time Collected: 11/05/15 11:00

Time Collected: 11/05/15 11:00 Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst Batch ID
I,4-Dichlorobenzene	BRL	mg/kg dry	0.0044	0.00017	1	8260B	11/9/15 19:55	MW&C(P5K0168
2,2-Dichloropropane	BRL	mg/kg dry	0.0044	0.00021	1	8260B	11/9/15 19:55	MW&C(P5K0168
2-Chlorotoluene	BRL	mg/kg dry	0.0044	0.00023	1	8260B	11/9/15 19:55	MW&C(P5K0168
I-Chlorotoluene	BRL.	mg/kg dry	0.0044	0.00026	1	8260B	11/9/15 19:55	MW&C(P5K0168
I-Isopropyltoluene	BRL	mg/kg dry	0.0044	0.00021	1	8260B	11/9/15 19:55	MW&C(P5K0168
Acetone	BRL	mg/kg dry	0.044	0.0011	. 1	8260B	11/9/15 19:55	MW&C(P5K0168
Benzene	BRL	mg/kg dry	0.0026	0.00026	1	8260B	11/9/15 19:55	MW&C(P5K0168
Bromobenzene	BRL	mg/kg dry	0.0044	0.00037	1	8260B	11/9/15 19:55	MW&C(P5K0168
Bromochloromethane	BRL	mg/kg dry	0.0044	0.00024	1	8260B	11/9/15 19:55	MW&C(P5K0168
Bromodichloromethane	BRL	mg/kg dry	0.0044	0.00025	1	8260B	11/9/15 19:55	MW&C(P5K0168
Bromoform	BRL	mg/kg dry	0.0044	0.00050	1	8260B	11/9/15 19:55	MW&C(P5K0168
Bromomethane	BRL	mg/kg dry	0.0088	0.00054	1	8260B	11/9/15 19:55	MW&C(P5K0168
Carbon Tetrachloride	BRL	mg/kg dry	0.0044	0.00022	1	8260B	11/9/15 19:55	MW&C(P5K0168
Chlorobenzene	BRL	mg/kg dry	0.0044	0.00023	1	8260B	11/9/15 19:55	MW&C(P5K0168
Chloroethane	BRL	mg/kg dry	0.0088	0.00037	1	8260B	11/9/15 19:55	MW&C(P5K0168
Chloroform	BRL	mg/kg dry	0.0044	0.00032	1	8260B	11/9/15 19:55	MW&C(P5K0168
Chloromethane	BRL	mg/kg dry	0.0044	0.00030	1	8260B	11/9/15 19:55	5 MW&C(P5K0168
cis-1,2-Dichloroethylene	BRL	mg/kg dry	0.0044	0.00019	1	8260B	11/9/15 19:55	5 MW&C(P5K0168
cis-1,3-Dichloropropylene	BRL	mg/kg dry	0.0044	0.00015	1	8260B	11/9/15 19:55	MW&C(P5K0168
Dibromochloromethane	BRL	mg/kg dry	0.0044	0.00018	1	8260B	11/9/15 19:55	MW&C(P5K0168
Dichlorodifluoromethane	BRL CCV	mg/kg dry	0.0044	0.00020	1	8260B	11/9/15 19:55	5 MW&C(P5K0168
Ethylbenzene	BRL	mg/kg dry	0.0044	0.00017	1	8260B	11/9/15 19:55	5 MW&C(P5K0168
sopropyl Ether	BRL	mg/kg dry	0.0044	0.00018	1	8260B	11/9/15 19:55	5 MW&C(P5K0168
sopropylbenzene (Cumene)	BRL	mg/kg dry	0.0044	0.00026	1	8260B	11/9/15 19:55	5 MW&C(P5K0168
m,p-Xylenes	BRL	mg/kg dry	0.0088	0.00041	1	8260B	11/9/15 19:5	5 MW&C(P5K0168
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.044	0.00040	1	8260B	11/9/15 19:55	5 MW&C(P5K0168
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	880,0	0.00040	1	8260B	11/9/15 19:5	5 MW&C(P5K0168
Methyl Isobutyl Ketone	BRL	mg/kg dry	0.044	0.00037	1	8260B	11/9/15 19:5	5 MW&C(P5K0168
Methylene Chloride	BRL	mg/kg dry	0.0044	0.00025	1	8260B	11/9/15 19:5	5 MW&C(P5K0168
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.0088	0.00014	1	8260B	11/9/15 19:5	5 MW&C(P5K0168
Naphthalene	BRL	mg/kg dry	0.0088	0.00014	1	8260B	11/9/15 19:5	5 MW&C(P5K0168
n-Butylbenzene	BRL	mg/kg dry	0.0044	0.00022	1	8260B	11/9/15 19:5	5 MW&C(P5K0168
n-Propylbenzene	BRL	mg/kg dry	0.0044	0.00026	1	8260B	11/9/15 19:5	5 MW&C(P5K0168
o-Xylene	BRL	mg/kg dry	0.0044	0.00018	1	8260B	11/9/15 19:5	
sec-Butylbenzene	BRL	mg/kg dry	0.0044	0.00021	1	8260B	11/9/15 19:5	
Styrene	BRL	mg/kg dry	0.0044	0.00026	1	8260B	11/9/15 19:5	
tert-Butylbenzene	BRL	mg/kg dry	0.0044	0.00015	1	8260B	11/9/15 19:5	
Tetrachloroethylene	BRL	mg/kg dry	0.0044	0.00021	1	8260B	11/9/15 19:5	
Toluene	BRL	mg/kg dry	0.0044	0.00025	1	8260B	11/9/15 19:5	
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0044	0.00026	1	8260B	11/9/15 19:5	
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0044	0.00023	1	8260B	11/9/15 19:5	
Trichloroethylene	BRL	mg/kg dry	0.0044	0.00028		8260B	11/9/15 19:5	
Trichlorofluoromethane	BRL	mg/kg dry	0.0044	0.00028		8260B	11/9/15 19:5	

MW&C(P5K0168

ATC Group Services, LLC Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Xylenes, total

Project: Kesler Mill (Brownfield)

mg/kg dry

Sample Matrix: Solid

BRL

Client Sample ID: GW-7 (0-1) Prism Sample ID: 5110135-06 Prism Work Order: 5110135

Time Collected: 11/05/15 11:00 Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Ar Date/Time	nalyst Batch
Vinyl acetate	BRL	mg/kg dry	0.022	0,00060	1	8260B	11/9/15 19:55	MW&C(P5K0168
Vinyl chloride	BRL	mg/kg dry	0.0044	0.00021	1	8260B	11/9/15 19:55	MW&C(P5K0168

0.013

0.00082

Surrogate	Recovery	Control Limits
4-Bromofluorobenzene	89 %	70-130
Dibromofluoromethane	110 %	84-123
Toluene-d8	85 %	76-129

8260B

11/9/15 19:55

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-7 (2-4) Prism Sample ID: 5110135-07 Prism Work Order: 5110135

Time Collected: 11/05/15 11:10 Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parameters									
% Solids	79.2	% by Weight	0.100	0.100	1	*SM2540 G	11/9/15 14:45	ARC	P5K0169
Polychlorinated Biphenyls (PCI	Bs) by GC/ECD								
Aroclor 1016	BRL	mg/kg dry	0.063	0.0059	1	8082A	11/13/15 5:2	6 JMC	P5K0219
Aroclor 1221	BRL	mg/kg dry	0.13	0.050	1	8082A	11/13/15 5:2	6 JMC	P5K0219
Arodor 1232	BRL	mg/kg dry	0.13	0.016	1	8082A	11/13/15 5:2	6 JMC	P5K021
Arodor 1242	BRL	mg/kg dry	0.063	0.017	1	8082A	11/13/15 5:2	6 JMC	P5K021
Aroclor 1248	BRL	mg/kg dry	0.063	0.013	1	8082A	11/13/15 5:2	6 JMC	P5K021
Aroclor 1254	BRL	mg/kg dry	0.063	0.016	1	8082A	11/13/15 5:2	6 JMC	P5K021
Aroclor 1260	BRL	mg/kg dry	0.063	0.0087	1	8082A	11/13/15 5:2	6 JMC	P5K021
			Surrogate			Recov	егу	Control I	Limits
			Tetrachloro-	m-xylene		61	%	36-182	
			Decachlorob	iphenyl		102	2 %	34-182	
Semivolatile Organic Compoun	ds by GC/MS			-					
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.42	0.065	1	8270D	11/10/15 14:	04 JM∨	P5K015
1,2-Dichlorobenzene	BRL	mg/kg dry	0.42	0.063	1	8270D	11/10/15 14:	04 JM∨	P5K015
1,3-Dichlorobenzene	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 14:	04 JMV	P5K015
1,4-Dichlorobenzene	BRL	mg/kg dry	0.42	0.061	1	8270D	11/10/15 14:	04 JM∨	P5K015
1-Methylnaphthalene	0.11 J	mg/kg dry	0.42	0.080	1	8270D	11/10/15 14:0	04 JMV	P5K015
2,4,6-Trichlorophenol	BRL	mg/kg dry	0.42	0.078	1	8270D	11/10/15 14:	04 JM∨	P5K015
2,4-Dichlorophenol	BRL	mg/kg dry	0.42	0.081	1	8270D	11/10/15 14:	04 JM∨	P5K015
2,4-Dimethylphenol	BRL	mg/kg dry	0.42	0.064	1	8270D	11/10/15 14:	04 JMV	P5K015
2,4-Dinitrophenol	BRL	mg/kg dry	0.42	0.058	1	8270D	11/10/15 14:	04 JM∨	P5K015
2,4-Dinitrotoluene	BRL	mg/kg dry	0.42	0.051	1	8270D	11/10/15 14:	04 JMV	P5K015
2,6-Dinitrotoluene	BRL	mg/kg dry	0.42	0.055	1	8270D	11/10/15 14:	04 JM∨	P5K015
2-Chloronaphthalene	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 14:	04 JMV	P5K01
2-Chlorophenol	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 14:	04 J M ∨	P5K01
2-Methylnaphthalene	0.15 J	mg/kg dry	0.42	0.067	1	8270D	11/10/15 14:	04 JMV	P5K01
2-Methylphenol	BRL	mg/kg dry	0.42	0.053	1	8270D	11/10/15 14:	04 JMV	P5K01
2-Nitrophenol	BRL	mg/kg dry	0.42	0.076	1	8270D	11/10/15 14:		P5K01
3,3'-Dichlorobenzidine	BRL	mg/kg dry	0.42	0.082	1	8270D	11/10/15 14:		P5K01
3/4-Methylphenol	BRL	mg/kg dry	0.42	0.051	1	8270D	11/10/15 14:	04 JMV	P5K01
4,6-Dinitro-2-methylphenol	BRL.	mg/kg dry	0.42	0.063	1	8270D	11/10/15 14:	04 JMV	P5K01
4-Bromophenyl phenyl ether	BRL	mg/kg dry	0.42	0.072	1	8270D	11/10/15 14:		P5K01
4-Chloro-3-methylphenol	BRL	mg/kg dry	0.42	0.058	1	8270D	11/10/15 14		P5K01
4-Chloroaniline	BRL	mg/kg dry	0.42	0.050	1	8270D	11/10/15 14		P5K01
4-Chlorophenyl phenyl ether	BRL	mg/kg dry	0.42	0.054	1	8270D	11/10/15 14		P5K01
4-Nitrophenol	BRL	mg/kg dry	0.42	0.064	1	8270D	11/10/15 14		P5K01
Acenaphthene	BRL	mg/kg dry	0.42	0.057	1	8270D	11/10/15 14		P5K01
	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 14		P5K01
Acenaphthylene									
Acenaphthylene Anthracene	BRL	mg/kg dry	0.42	0.067	1	8270D	11/10/15 14		P5K01

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Total Metals

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-7 (2-4) Prism Sample ID: 5110135-07 Prism Work Order: 5110135

Time Collected: 11/05/15 11:10 Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Benzo(a)anthracene	BRL	mg/kg dry	0.42	0.055	1	8270D	11/10/15 14:0	4 JMV	P5K0151
Benzo(a)pyrene	BRL	mg/kg dry	0.42	0.045	1	8270D	11/10/15 14:0	4 JMV	P5K0151
Benzo(b)fluoranthene	BRL	mg/kg dry	0.42	0.048	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
Benzo(g,h,i)perylene	BRL	mg/kg dry	0.42	0.046	1	8270D	11/10/15 14:0	4 JMV	P5K0151
Benzo(k)fluoranthene	BRL	mg/kg dry	0.42	0.055	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
Benzoic Acid	BRL	mg/kg dry	0.42	0.035	1	8270D	11/10/15 14:0	4 JMV	P5K0151
Benzyl alcohol	BRL	mg/kg dry	0.42	0.055	1	8270D	11/10/15 14:0	4 JMV	P5K0151
bis(2-Chloroethoxy)methane	BŖL	mg/kg dry	0.42	0.072	1	8270D	11/10/15 14:0	4 JMV	P5K0151
Bis(2-Chloroethyl)ether	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
Bis(2-chloroisopropyl)ether	BRL	mg/kg dry	0.42	0.071	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
Bis(2-Ethylhexyl)phthalate	BRL	mg/kg dry	0.42	0.062	1	8270D	11/10/15 14:0	4 JMV	P5K0151
Butyl benzyl phthalate	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
Chrysene	BRL	mg/kg dry	0.42	0.052	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
Dibenzo(a,h)anthracene	BRL	mg/kg dry	0.42	0.051	1	8270D	11/10/15 14:0	4 JMV	P5K0151
Dibenzofuran	BRL	mg/kg dry	0.42	0.063	1	8270D	11/10/15 14:0	4 JMV	P5K0151
Diethyl phthalate	BRL	mg/kg dry	0.42	0.057	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
Dimethyl phthalate	BRL	mg/kg dry	0.42	0.055	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
Di-n-butyl phthalate	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
Di-n-octyl phthalate	BRL	mg/kg dry	0.42	0.051	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
Fluoranthene	0.12 J	mg/kg dry	0.42	0.053	1	8270D	11/10/15 14:04	JMV	P5K0151
Fluorene	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
Hexachlorobenzene	BRL	mg/kg dry	0.42	0.066	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
Hexachlorobutadiene	BRL	mg/kg dry	0.42	0.075	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
Hexachlorocyclopentadiene	BRL	mg/kg dry	0.42	0.074	1	8270D	11/10/15 14:0	4 JMV	P5K0151
Hexachloroethane	BRL	mg/kg dry	0.42	0.070	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
Indeno(1,2,3-cd)pyrene	BRL	mg/kg dry	0.42	0.048	1	8270D	11/10/15 14:0	4 JMV	P5K0151
Isophorone	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
Naphthalene	BRL	mg/kg dry	0,42	0.067	1	8270D	11/10/15 14:0	4 JMV	P5K0151
Nitrobenzene	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
N-Nitroso-di-n-propylamine	BRL	mg/kg dry	0.42	0.066	1	8270D	11/10/15 14:0	4 JMV	P5K0151
N-Nitrosodiphenylamine	BRL	mg/kg dry	0.42	0,063	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
Pentachlorophenol	BRL	mg/kg dry	0.42	0.049	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
Phenanthrene	0.15 J	mg/kg dry	0.42	0.054	1	8270D	11/10/15 14:04	JMV	P5K0151
Phenol	BRL	mg/kg dry	0.42	0.061	1	8270D	11/10/15 14:0	4 JM∨	P5K0151
	0.12 J	mg/kg dry	0.42	0.055	1	8270D	11/10/15 14:04		P5K0151
Pyrene	0.12 3	ing/kg dry	Surrogate	0.000		Recov		Control	Limits
			2,4,6-Tribro	mophenol		91	1 %	39-132	
			2-Fluorobiph	•		87 %		44-115	
			2-Fluorophe	•		82 %		35-115	
			Nitrobenzen			77 %		37-122	
			Phenol-d5				3 %	34-121	
			. 1101101-00			•			

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Terphenyl-d14

54-127

89 %

12/17/2015

ATC Group Services, LLC Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-7 (2-4) Prism Sample ID: 5110135-07 Prism Work Order: 5110135 Time Collected: 11/05/15 11:10

Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Ana Date/Time	lyst Batch ID
Aluminum	41000	mg/kg dry	640	87	200	*6010C	11/12/15 18:09 E	GM P5K0149
Mercury	0.066	mg/kg dry	0.024	0.0016	1	*7471B	11/9/15 13:21	AB P5K0150
Antimony	9.9	mg/kg dry	0.32	0.050	1	*6010C	11/10/15 1:28 E	GM P5K0149
Arsenic	28	mg/kg dry	0.32	0.071	1	*6010C	11/10/15 1:28 E	GM P5K0149
Barium	78	mg/kg dry	0.64	0.34	1	*6010C	11/10/15 1:28 E	3GM P5K0149
Beryllium	31	mg/kg dry	0.32	0.011	1	*6010C	11/10/15 1:28 I	3GM P5K0149
Cadmium	27	mg/kg dry	0.32	0.0068	1	*6010C	11/10/15 1:28 1	BGM P5K0149
Calcium	630	mg/kg dry	13	0.83	1	*6010C	11/10/15 1:28 I	BGM P5K0149
Chromium	57	mg/kg dry	0.32	0.044	1	*6010C	11/10/15 1:28	BGM P5K0149
Cobalt	78	mg/kg dry	0.32	0.010	1	*6010C	11/10/15 1:28 I	BGM P5K0149
Copper	90	mg/kg dry	0.64	0.11	1	*6010C	11/10/15 1:28	3GM P5K0149
ron	53000	mg/kg dry	1300	370	200	*6010C	11/12/15 18:09	3GM P5K0149
Lead	38	mg/kg dry	0.32	0.034	1	*6010C	11/10/15 1:28	3GM P5K0149
Magnesium	1600	mg/kg dry	3.2	0.35	1	*6010C	11/10/15 1:28	3GM P5K0149
Manganese	480	mg/kg dry	64	12	200	*6010C	11/12/15 18:09	3GM P5K0149
Nickel	40	mg/kg dry	0.64	0.060	1	*6010C	11/10/15 1:28	3GM P5K0149
Potassium	1400	mg/kg dry	16	1.6	1	*6010C	11/10/15 1:28	BGM P5K014
Selenium	22	mg/kg dry	0.64	0.047	1	*6010C	11/10/15 1:28	BGM P5K014
Silver	11	mg/kg dry	0.32	0.0053	1	*6010C	11/10/15 1:28	BGM P5K014
Sodium	670	mg/kg dry	19	0.56	1	*6010C	11/10/15 1:28	BGM P5K0149
Thallium	25	mg/kg dry	0.64	0.046	1	*6010C	11/10/15 1:28	BGM P5K0149
Vanadium	160	mg/kg dry	0.32	0.011	1	*6010C	11/10/15 1:28	BGM P5K0149
Zinc	91	mg/kg dry	3.2	0.039	1	*6010C		BGM P5K014
Volatile Organic Compounds	by GC/MS							
1,1,1,2-Tetrachloroethane	BRL	mg/kg dry	0.0054	0.00044	1	8260B	11/9/15 20:27	MW&C(P5K016
1,1,1-Trichloroethane	BRL	mg/kg dry	0.0054	0.00026	1	8260B	11/9/15 20:27	MW&C(P5K016
1,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0054	0.00037	1	8260B	11/9/15 20:27	MW&C(P5K016
1,1,2-Trichloroethane	BRL	mg/kg dry	0.0054	0.00048	1	8260B	11/9/15 20:27	MW&C(P5K016
1,1-Dichloroethane	BRL.	mg/kg dry	0.0054	0.00015	1	8260B	11/9/15 20:27	MW&C(P5K016
1,1-Dichloroethylene	BRL	mg/kg dry	0.0054	0.00024	1	8260B	11/9/15 20:27	MW&C(P5K016
1,1-Dichloropropylene	BRL	mg/kg dry	0.0054	0.00030	1	8260B	11/9/15 20:27	MW&C(P5K016
1,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0054	0.00031	1	8260B		MW&C(P5K016
1,2,3-Trichloropropane	BRL	mg/kg dry	0.0054	0.00069	1	8260B	11/9/15 20:27	MW&C(P5K016
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0054	0,00040	1	8260B		MW&C(P5K016
1,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0054	0.00041	1	8260B		MW&C(P5K016
1,2-Dibromoethane	BRL	mg/kg dry	0.0054	0.00022		8260B		MW&C(P5K016
1,2-Dichlorobenzene	BRL	mg/kg dry	0.0054	0.00025		8260B		MW&C(P5K016
1,2-Dichloroethane	BRL .	mg/kg dry	0.0054	0.00032		8260B		MW&C(P5K016
1,2-Dichloropropane	BRL	mg/kg dry	0.0054	0.00034		8260B	11/9/15 20:27	MW&C(P5K016
1,3,5-Trimethylbenzene	BRL	mg/kg dry	0.0054	0.00041	1	8260B	11/9/15 20:27	MW&C(P5K016
1,3-Dichlorobenzene	BRL	mg/kg dry	0.0054	0.00036		8260B		MW&C(P5K016
1,3-Dichloropropane	BRL	mg/kg dry	0.0054	0.00027	1	8260B	11/9/15 20:27	MW&C(P5K016

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-7 (2-4)
Prism Sample ID: 5110135-07
Prism Work Order: 5110135

Time Collected: 11/05/15 11:10 Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
1,4-Dichlorobenzene	BRL	mg/kg dry	0.0054	0.00021	. 1	8260B	11/9/15 20:27	MW&C	P5K0168
2,2-Dichloropropane	BRL	mg/kg dry	0.0054	0.00026	1	8260B	11/9/15 20:27	MW&C	P5K0168
2-Chlorotoluene	BRL	mg/kg dry	0.0054	0.00028	1	8260B	11/9/15 20:27	MW&C	P5K0168
4-Chlorotoluene	BRL	mg/kg dry	0.0054	0.00032	1	8260B	11/9/15 20:27	MW&C	P5K0168
4-Isopropyltoluene	BRL	mg/kg dry	0.0054	0.00026	1	8260B	11/9/15 20:27	MW&C	P5K0168
Acetone	BRL	mg/kg dry	0.054	0.0013	1	8260B	11/9/15 20:27	MW&C	P5K0168
Benzene	BRL	mg/kg dry	0.0032	0.00031	1	8260B	11/9/15 20:27	MW&C	P5K0168
Bromobenzene	BRL	mg/kg dry	0.0054	0.00045	1	8260B	11/9/15 20:27	MW&C	P5K0168
Bromochloromethane	BRL	mg/kg dry	0.0054	0.00030	1	8260B	11/9/15 20:27	MW&C	P5K0168
Bromodichloromethane	BRL	mg/kg dry	0.0054	0.00030	1	8260B	11/9/15 20:27	MW&C	P5K0168
Bromoform	BRĻ	mg/kg dry	0.0054	0.00061	1	8260B	11/9/15 20:27	MW&C	P5K0168
Bromomethane	BRL	mg/kg dry	0.011	0.00067	1	8260B	11/9/15 20:27	MW&C	P5K0168
Carbon Tetrachloride	BRL	mg/kg dry	0.0054	0.00027	1	8260B	11/9/15 20:27	MW&C	P5K0168
Chlorobenzene	BRL	mg/kg dry	0.0054	0.00029	1	8260B	11/9/15 20:27	MW&C	P5K0168
Chloroethane	BRL	mg/kg dry	0.011	0.00045	1	8260B	11/9/15 20:27	MW&C	P5K0168
Chloroform	BRL	mg/kg dry	0.0054	0.00039	1	8260B	11/9/15 20:27	MW&C	P5K0168
Chloromethane	BRL	mg/kg dry	0.0054	0.00036	1	8260B	11/9/15 20:27	MW&C	P5K0168
cis-1,2-Dichloroethylene	BRL	mg/kg dry	0.0054	0.00023	1	8260B	11/9/15 20:27	MW&C	P5K0168
cis-1,3-Dichloropropylene	BRL	mg/kg dry	0.0054	0.00018	1	8260B	11/9/15 20:27	MW&C	P5K0168
Dibromochloromethane	BRL	mg/kg dry	0.0054	0.00022	1	8260B	11/9/15 20:27	MW&C0	P5K0168
Dichlorodifluoromethane	BRL CCV	mg/kg dry	0.0054	0.00025	1	8260B	11/9/15 20:27	MW&C	P5K0168
Ethylbenzene	BRL	mg/kg dry	0.0054	0.00021	1	8260B	11/9/15 20:27		P5K0168
Isopropyl Ether	BRL	mg/kg dry	0.0054	0.00022	1	8260B	11/9/15 20:27	MW&C	P5K0168
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0054	0.00032	1	8260B	11/9/15 20:27		P5K0168
m,p-Xylenes	BRL	mg/kg dry	0.011	0.00050	1	8260B	11/9/15 20:27		P5K0168
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.054	0.00049	1	8260B	11/9/15 20:27		P5K0168
Methyl Ethyl Ketone (2-Butarione)	BRL	mg/kg dry	0.11	0.00049	1	8260B	11/9/15 20:27	MW&C	P5K0168
Methyl Isobutyl Ketone	BRL	mg/kg dry	0.054	0.00046	1	8260B	11/9/15 20:27	MW&C0	P5K0168
Methylene Chloride	BRL	mg/kg dry	0.0054	0.00030	1	8260B	11/9/15 20:27	MW&C0	P5K0168
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.011	0.00017	1	8260B	11/9/15 20:27	MW&C	P5K0168
Naphthalene	BRL	mg/kg dry	0.011	0.00017	1	8260B	11/9/15 20:27	MW&C	P5K0168
n-Butylbenzene	BRL	mg/kg dry	0.0054	0.00028	1	8260B	11/9/15 20:27	MW&C	P5K0168
n-Propylbenzene	BRL	mg/kg dry	0.0054	0.00032	1	8260B	11/9/15 20:27		P5K0168
o-Xylene	BRL	mg/kg dry	0.0054	0.00022	1	8260B	11/9/15 20:27	MW&C	P5K0168
sec-Butylbenzene	BRL	mg/kg dry	0.0054	0.00026	1	8260B	11/9/15 20:27	MW&C	P5K0168
Styrene	BRL	mg/kg dry	0.0054	0.00033	1	8260B	11/9/15 20:27	MW&C	P5K0168
tert-Butylbenzene	BRL	mg/kg dry	0.0054	0.00018	1	8260B	11/9/15 20:27	MW&C	P5K0168
Tetrachloroethylene	BRL	mg/kg dry	0.0054	0.00026	1	8260B	11/9/15 20:27		P5K0168
Toluene	BRL	mg/kg dry	0.0054	0.00031	1	8260B	11/9/15 20:27		P5K0168
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0054	0.00032	1	8260B	11/9/15 20:27		P5K0168
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0054	0.00028	1	8260B	11/9/15 20:27		P5K0168
Trichloroethylene	BRL	mg/kg dry	0.0054	0.00035	1	8260B	11/9/15 20:27		P5K0168
Trichlorofluoromethane	BRL	mg/kg dry	0.0054	0.00035	1	8260B	11/9/15 20:27	MW&C	P5K0168

Batch

ID

ATC Group Services, LLC

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Parameter

Project: Kesler Mill (Brownfield)

Result

Client Sample ID: GW-7 (2-4)

Prism Sample ID: 5110135-07

Prism Work Order: 5110135

Date/Time

Factor

Vinyl acetate	BRL	mg/kg dry	0.027	0.00074	1	8260B	11/9/15 20:27	MW&C(P5K0168	
Vinyl chloride	BRL	mg/kg dry	0.0054	0.00026	1	8260B	11/9/15 20:27	MW&C(P5K0168	
Xylenes, total	BRL	mg/kg dry	0.016	0.0010	1	8260B	11/9/15 20:27	MW&C(P5K0168	
•			Surrogate			Reco	very	Control Limits	
			4-Bromoflu	orobenzene		87 %		70-130	
			Dibromofluoromethane			10	7 %	84-123	
			Toluene-d8			8-	1 %	76-129	

Limit

ATC Group Services, LLC

Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Client Sample ID: GW-8 (0-1) Prism Sample ID: 5110135-08

Prism Work Order: 5110135 Time Collected: 11/05/15 11:5

Sample Matrix: Solid

trix: Solid Time Collected: 11/05/15 11:50 Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Diesel Range Organics by GC/	FID								
Diesel Range Organics	63	mg/kg dry	27	3.4	11	*8015C	11/12/15 20:3	2 ZRC	P5K0200
			Surrogate			Recov	ery	Control	Limits
			o-Terphenyl			54	%	49-124	
General Chemistry Parameters	<u> </u>								
% Solids	77.9	% by Weight	0.100	0.100	1	*\$M2540 G	11/9/15 14:46	ARC	P5K0169
Polychlorinated Biphenyls (PC	Bs) by GC/ECD								
Aroclor 1016	BRL	mg/kg dry	0.064	0.0060	1	8082A	11/19/15 7:5	1 JMC	P5K0219
Aroclor 1221	BRL	mg/kg dry	0.13	0.051	1	8082A	11/19/15 7:5	1 JMC	P5K0219
Aroclor 1232	BRL	· mg/kg dry	0.13	0.017	1	8082A	11/19/15 7:5	1 JMC	P5K0219
Aroclor 1242	BRL	mg/kg dry	0.064	0.017	1	8082A	11/19/15 7:5	1 JMC	P5K0219
Aroclor 1248	BRL	mg/kg dry	0.064	0.013	1	8082A	11/19/15 7:5	1 JMC	P5K0219
Aroclor 1254	BRL	mg/kg dry	0.064	0.016	1	8082A	11/19/15 7:5	1 JMC	P5K0219
Aroclor 1260	BRL	mg/kg dry	0.064	8800.0	1	8082A	11/19/15 7:5	1 JMC	P5K0219
			Surrogate			Recov	ery	Control	Limits
			Tetrachloro-r	n-xylene		48	%	36-182	
			Decachlorob	phenyl		70	%	34-182	
Semivolatile Organic Compoun	nds by GC/MS								
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.42	0.066	1	8270D	11/10/15 18:5	7 JMV	P5K0151
1,2-Dichlorobenzene	BRL	mg/kg dry	0.42	0.064	1	8270D	11/10/15 18:5	7 JMV	P5K0151
1,3-Dichlorobenzene	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 18:5	7 JMV	P5K0151
1,4-Dichlorobenzene	BRL	mg/kg dry	0.42	0.062	1	8270D	11/10/15 18:5	7 JMV	P5K0151
1-Methylnaphthalene	0.48	mg/kg dry	0.42	0.082	1	8270D	11/10/15 18:5	7 JMV	P5K0151
2,4,6-Trichlorophenol	BRL	mg/kg dry	0.42	0.079	1	8270D	11/10/15 18:5		P5K0151
2,4-Dichlorophenol	BRL	mg/kg dry	0.42	0.082	1	8270D	11/10/15 18:5		P5K0151
2,4-Dimethylphenol	BRL	mg/kg dry	0.42	0.065	1	8270D	11/10/15 18:5		P5K0151
2,4-Dinitrophenol	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 18:5		P5K0151
2,4-Dinitrotoluene	BRL	mg/kg dry	0.42	0.051	1	8270D	11/10/15 18:5		P5K0151
2,6-Dinitrotoluene	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 18:5		P5K0151
2-Chloronaphthalene	BRL					8270D	11/10/15 18:5		P5K0151
•		mg/kg dry	0.42	0.061	1		11/10/15 18:5		P5K0151
2-Chlorophenol	BRL	mg/kg dry	0.42	0.060	1	8270D			P5K0151
2-Methylnaphthalene	0.63	mg/kg dry	0.42	0.068	1	8270D	11/10/15 18:5		P5K0151
2-Methylphenol	BRL	mg/kg dry	0.42	0.054	1	8270D	11/10/15 18:5		
2-Nitrophenol	BRL	mg/kg dry	0.42	0.077	1	8270D	11/10/15 18:5		P5K0151
3,3'-Dichlorobenzidine	BRL	mg/kg dry	0.42	0.084	1	8270D	11/10/15 18:5		P5K0151
3/4-Methylphenol	BRL	mg/kg dry	0.42	0.052	1	8270D	11/10/15 18:5		P5K0151
4,6-Dinitro-2-methylphenol	BRL	mg/kg dry	0.42	0.064	1	8270D	11/10/15 18:5		P5K0151
4-Bromophenyl phenyl ether	BRL	mg/kg dry	0.42	0.073	1	8270D	11/10/15 18:5		P5K0151
4-Chloro-3-methylphenol	BRL	mg/kg dry	0.42	0.059	1	8270D	11/10/15 18:5		P5K0151
4-Chloroaniline	BRL	mg/kg dry	0.42	0.051	1	8270D	11/10/15 18:5	7 JMV	P5K0151
4-Chlorophenyl phenyl ether	BRL			0.055		8270D	11/10/15 18:5		P5K0151

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-8 (0-1)
Prism Sample ID: 5110135-08
Prism Work Order: 5110135
Time Collected: 11/05/15 11:50
Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analyst Date/Time	Batch ID
4-Nitrophenol	BRL	mg/kg dry	0.42	0.065	1	8270D	11/10/15 18:57 JMV	P5K0151
Acenaphthene	BRL	mg/kg dry	0.42	0.058	1	8270D	11/10/15 18:57 JMV	P5K0151
Acenaphthylene	BRL	mg/kg dry	0.42	0.061	1	8270D	11/10/15 18:57 JMV	P5K0151
Anthracene	BRL	mg/kg dry	0.42	0.068	1	8270D	11/10/15 18:57 JMV	P5K0151
Azobenzene	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 18:57 JMV	P5K0151
Benzo(a)anthracene	0.22 J	mg/kg dry	0.42	0.055	1	8270D	11/10/15 18:57 JMV	P5K0151
Benzo(a)pyrene	0.17 J	mg/kg dry	0.42	0.046	1	8270D	11/10/15 18:57 JMV	P5K0151
Benzo(b)fluoranthene	0.29 J	mg/kg dry	0.42	0.049	1	8270D	11/10/15 18:57 JMV	P5K0151
Benzo(g,h,i)perylene	BRL	mg/kg dry	0.42	0.046	1	8270D	11/10/15 18:57 JMV	P5K0151
Benzo(k)fluoranthene	0.11 J	mg/kg dry	0.42	0.056	1	8270D	11/10/15 18:57 JMV	P5K0151
Benzoic Acid	0.30 J	mg/kg dry	0.42	0.036	1	8270D	11/10/15 18:57 JMV	P5K0151
Benzyl alcohol	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 18:57 JMV	P5K0151
bis(2-Chloroethoxy)methane	BRL	mg/kg dry	0.42	0.073	1	8270D	11/10/15 18:57 JMV	P5K0151
Bis(2-Chloroethyl)ether	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 18:57 JMV	P5K0151
Bis(2-chloroisopropyl)ether	BRL	mg/kg dry	0.42	0.072	1	8270D	11/10/15 18:57 JMV	P5K0151
Bis(2-Ethylhexyl)phthalate	BRL	mg/kg dry	0.42	0.063	1	8270D	11/10/15 18:57 JMV	P5K0151
Butyl benzyl phthalate	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 18:57 JMV	P5K0151
Chrysene	0.25 J	mg/kg dry	0.42	0.053	1	8270D	11/10/15 18:57 JMV	P5K0151
Dibenzo(a,h)anthracene	BRL	mg/kg dry	0,42	0.052	1	8270D	11/10/15 18:57 JMV	P5K0151
Dibenzofuran	0.17 J	mg/kg dry	0.42	0.064	1	8270D	11/10/15 18:57 JMV	P5K0151
Diethyl phthalate	BRL	mg/kg dry	0.42	0.058	1	8270D	11/10/15 18:57 JMV	P5K0151
Dimethyl phthalate	BRL	mg/kg dry	0.42	0.056	1	8270D	11/10/15 18:57 JMV	P5K0151
Di-n-butyl phthalate	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 18:57 JMV	P5K0151
Di-n-octyl phthalate	BRL	mg/kg dry	0.42	0.052	1	8270D	11/10/15 18:57 JMV	P5K0151
Fluoranthene	0.36 J	mg/kg dry	0.42	0.054	1	8270D	11/10/15 18:57 JMV	P5K0151
Fluorene	BRL	mg/kg dry	0.42	0.061	1	8270D	11/10/15 18:57 JMV	P5K0151
Hexachlorobenzene	BRL	mg/kg dry	0.42	0.067	1	8270D	11/10/15 18:57 JMV	P5K0151
Hexachlorobutadiene	BRL	mg/kg dry	0.42	0.076	1	8270D	11/10/15 18:57 JMV	P5K0151
Hexachlorocyclopentadiene	BRL	mg/kg dry	0.42	0.075	1	8270D	11/10/15 18:57 JMV	P5K0151
Hexachloroethane	BRL	mg/kg dry	0.42	0.071	1	8270D	11/10/15 18:57 JMV	P5K0151
Indeno(1,2,3-cd)pyrene	BRL	mg/kg dry	0.42	0.049	1	8270D	11/10/15 18:57 JMV	P5K0151
Isophorone	BRL	mg/kg dry	0.42	0.057	1	8270D	11/10/15 18:57 JMV	P5K0151
Naphthalene	0.47	mg/kg dry	0.42	0.068	1	8270D	11/10/15 18:57 JMV	P5K0151
Nitrobenzene	BRL	mg/kg dry	0.42	0.060	1	8270D	11/10/15 18:57 JMV	P5K0151
N-Nitroso-di-n-propytamine	BRL	mg/kg dry	0,42	0.067	1	8270D	11/10/15 18:57 JMV	P5K0151
N-Nitrosodiphenylamine	BRL	mg/kg dry	0.42	0.064		8270D	11/10/15 18:57 JMV	P5K0151
Pentachiorophenol	BRL	mg/kg dry	0.42	0.050		8270D	11/10/15 18:57 JMV	P5K0151
Phenanthrene	0.52	mg/kg dry	0.42	0.055		8270D	11/10/15 18:57 JMV	P5K0151
Phenol	BRL	mg/kg dry	0.42	0.062		8270D	11/10/15 18:57 JMV	P5K0151
Pyrene	0.33 J	mg/kg dry	0.42	0.056		8270D	11/10/15 18:57 JMV	P5K0151
. 3.000	V.J. J	mg/kg ary	Surrogate	0.050				Limits
			2,4,6-Tribro	•	i		53 % 39-13:	
			2-Fluorobip	nenyl		e	65 % 44-11:	,

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

54-127

12/17/2015

ATC Group Services, LLC Attn: Christine Schaefer

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-8 (0-1)

Prism Sample ID: 5110135-08

Prism Work Order: 5110135

Time Collected: 11/05/15 11:50 Time Submitted: 11/06/15 09:50

66 %

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
· · · · · · · · · · · · · · · · · · ·			2-Fluorophe	nol		59	%	35-115	
			Nitrobenzen	e-d5		59	%	37-122	
			Phenol-d5			60	%	34-121	

Terphenyl-d14

7606 Whitehall Executive Center Drive, Suite

Charlotte, NC 28273

Project: Kesler Mill (Brownfield)

Sample Matrix: Solid

Client Sample ID: GW-8 (4-6) Prism Sample ID: 5110135-09 Prism Work Order: 5110135

Time Collected: 11/05/15 12:00 Time Submitted: 11/06/15 09:50

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analys	Batch
Diesel Range Organics by GC/F	ID .								
Diesel Range Organics	BRL	mg/kg dry	9.6	1.2	1	*8015C	11/12/15 22	:23 ZR0	P5K0200
			Surrogate	-		Recove	ery	Contr	ol Limits
			o-Terphenyl			50	%	49-12	24
General Chemistry Parameters	•								
% Solids	72.8	% by Weight	0.100	0.100	1	*SM2540 G	11/9/15 14:4	5 AR	P5K016
Polychlorinated Biphenyls (PCE	Bs) by GC/ECD								
Aroclor 1016	BRL	mg/kg dry	0.069	0.0064	1	8082A	11/13/15 6	51 JM	P5K021
Arodor 1221	BRL	mg/kg dry	0.14	0.055	1	8082A	11/13/15 6	51 JM	P5K021
Aroclor 1232	BRL	mg/kg dry	0.14	0.018	1	8082A	11/13/15 6	51 JM	P5K021
Aroclor 1242	BRL	mg/kg dry	0.069	0.018	1	8082A	11/13/15 6	51 JM	P5K021
Aroclor 1248	BRL	mg/kg dry	0.069	0.014	1	8082A	11/13/15 6	51 JM	P5K021
Aroclor 1254	BRL	mg/kg dry	0.069	0.017	1	8082A	11/13/15 6	51 JM	P5K021
Arodor 1260	BRL	mg/kg dry	0.069	0.0095	1	8082A	11/13/15 6	51 JM	P5K02
			Surrogate			Recov	ery	Contr	ol Limits
			Tetrachloro-r	n-xylene		62	2 %	36-1	82
			Decachlorob	iphenyl		88	3 %	34-1	82
Semivolatile Organic Compoun	ds by GC/MS								
Semivolatile Organic Compoun 1,2,4-Trichlorobenzene	ds by GC/MS	mg/kg dry	0.45	0.071	1	8270D	11/10/15 14	1:49 JM	V P5K01
		mg/kg dry mg/kg dry	0.45 0.45	0.071 0.069	1	8270D 8270D	11/10/15 14 11/10/15 14		
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.45	0.069				1:49 JM	∨ P5K01
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	BRL BRL				1	8270D	11/10/15 14	I:49 JM I:49 JM	V P5K015
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	BRL BRL BRL	mg/kg dry mg/kg dry	0.45 0.45	0.069 0.064	1 1	8270D 8270D	11/10/15 14 11/10/15 14	1:49 JM 1:49 JM 1:49 JM	V P5K015 V P5K015 V P5K015
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.45 0.45 0.45 0.45	0.069 0.064 0.066 0.087	1 1 1	8270D 8270D 8270D	11/10/15 14 11/10/15 14 11/10/15 14	1:49 JM 1:49 JM 1:49 JM 1:49 JM	V P5K015 V P5K015 V P5K015 V P5K015
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene	BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.45 0.45 0.45 0.45 0.45	0.069 0.064 0.066 0.087 0.085	1 1 1	8270D 8270D 8270D 8270D 8270D	11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14	1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM	P5K015 P5K015 P5K015 P5K015 P5K015 P5K015
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol	BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.45 0.45 0.45 0.45 0.45	0.069 0.064 0.066 0.087 0.085 0.087	1 1 1 1	8270D 8270D 8270D 8270D	11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14	1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM	P5K018 P5K018 P5K018 P5K018 P5K018 P5K018 P5K018
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol	BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.45 0.45 0.45 0.45 0.45 0.45	0.069 0.064 0.066 0.087 0.085 0.087	1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14	1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM	P5K015 P5K015 P5K015 P5K015 P5K015 P5K015 P5K015 P5K015 P5K015 P5K015
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.069 0.064 0.066 0.087 0.085 0.087 0.069	1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14	1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM	V P5K01! V P5K01! V P5K01! V P5K01! V P5K01! V P5K01! V P5K01! V P5K01! V P5K01!
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.069 0.064 0.066 0.087 0.085 0.087 0.069 0.063	1 1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14	1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM	V P5K018 V P5K018 V P5K018 V P5K018 V P5K018 V P5K018 V P5K018 V P5K018 V P5K018
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene	BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.069 0.064 0.066 0.087 0.085 0.069 0.063 0.055	1 1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14	1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM	P5K011 P5K011 P5K011 P5K011 P5K011 P5K011 P5K011 P5K011 P5K011 P5K011 P5K011 P5K011
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.069 0.064 0.066 0.087 0.085 0.069 0.063 0.055 0.060	1 1 1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14	1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM	V P5K01! V P5K01! V P5K01! V P5K01! V P5K01! V P5K01! V P5K01! V P5K01! V P5K01! V P5K01! V P5K01! V P5K01!
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.069 0.064 0.087 0.085 0.087 0.069 0.063 0.055 0.060 0.066	1 1 1 1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14	1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM	P5K01! P5K01! P5K01! P5K01! P5K01! P5K01! P5K01! P5K01! P5K01! P5K01! P5K01! P5K01! P5K01!
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.069 0.064 0.087 0.085 0.087 0.069 0.063 0.055 0.060 0.066	1 1 1 1 1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14	1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM	V P5K01: V P5K01: V P5K01: V P5K01: V P5K01: V P5K01: V P5K01: V P5K01: V P5K01 V P5K01 V P5K01 V P5K01 V P5K01
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.069 0.064 0.087 0.085 0.087 0.069 0.063 0.055 0.060 0.064 0.072	1 1 1 1 1 1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 14 11/10/15 14	1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM	P5K01! P5K01! P5K01! P5K01! P5K01! P5K01! P5K01! P5K01! P5K01! P5K01! P5K01 P5K01 P5K01 P5K01 P5K01 P5K01
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.069 0.064 0.087 0.085 0.087 0.069 0.063 0.055 0.060 0.066 0.064 0.072 0.058	1 1 1 1 1 1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14	1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM	V P5K01! V P5K01! V P5K01! V P5K01! V P5K01! V P5K01! V P5K01! V P5K01! V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitrophenol 3,3'-Dichlorobenzidine	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.069 0.064 0.087 0.085 0.087 0.069 0.063 0.055 0.060 0.066 0.064 0.072 0.058 0.082	1 1 1 1 1 1 1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14	1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM	P5K01! P5K01! P5K01! P5K01! P5K01! P5K01! P5K01! P5K01! P5K01! P5K01 P5K01 P5K01 P5K01 P5K01 P5K01 P5K01 P5K01 P5K01 P5K01
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol 2-Methylphenol 3,3'-Dichlorobenzidine 3/4-Methylphenol	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.069 0.064 0.087 0.085 0.087 0.069 0.063 0.055 0.066 0.064 0.072 0.058 0.082	1 1 1 1 1 1 1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14 11/10/15 14	1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM 1:49 JM	V P5K01: V P5K01: V P5K01: V P5K01: V P5K01: V P5K01: V P5K01: V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitrophenol 3,3'-Dichlorobenzidine 3/4-Methylphenol 4,6-Dinitro-2-methylphenol	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.069 0.064 0.087 0.085 0.087 0.069 0.063 0.055 0.060 0.064 0.072 0.058 0.082 0.089	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 14 11/10/15 14	1:49 JM 1:49 JM	P5K01 P5K01
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitrophenol 3,3'-Dichlorobenzidine 3/4-Methylphenol 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.069 0.064 0.087 0.085 0.087 0.069 0.063 0.055 0.060 0.064 0.072 0.058 0.082 0.089 0.068	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 14 11/10/15 14	1:49 JM 1:49 JM	P5K01 P5K01
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1-Methylnaphthalene 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitrophenol 3,3'-Dichlorobenzidine 3/4-Methylphenol 4,6-Dinitro-2-methylphenol	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.069 0.064 0.087 0.085 0.087 0.069 0.063 0.055 0.060 0.064 0.072 0.058 0.082 0.089	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D 8270D	11/10/15 14 11/10/15 14	1:49 JM 1:49 JM	V P5K01. V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01 V P5K01